Step |
Hyp |
Ref |
Expression |
1 |
|
tbw-negdf |
⊢ ( ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) → ⊥ ) |
2 |
|
tbw-ax2 |
⊢ ( ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) → ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) ) |
3 |
|
tbwlem4 |
⊢ ( ( ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) → ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) ) → ( ( ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) → ⊥ ) → ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) ) ) |
4 |
2 3
|
ax-mp |
⊢ ( ( ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) → ⊥ ) → ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) ) |
5 |
1 4
|
ax-mp |
⊢ ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) |
6 |
|
tbw-ax1 |
⊢ ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ( ( ¬ 𝜑 → 𝜑 ) → ( ( 𝜑 → ⊥ ) → 𝜑 ) ) ) |
7 |
5 6
|
ax-mp |
⊢ ( ( ¬ 𝜑 → 𝜑 ) → ( ( 𝜑 → ⊥ ) → 𝜑 ) ) |
8 |
|
tbw-ax3 |
⊢ ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) |
9 |
7 8
|
tbwsyl |
⊢ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) |