Metamath Proof Explorer


Theorem re1luk2

Description: luk-2 derived from the Tarski-Bernays-Wajsberg axioms. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion re1luk2 ( ( ¬ 𝜑𝜑 ) → 𝜑 )

Proof

Step Hyp Ref Expression
1 tbw-negdf ( ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) → ⊥ )
2 tbw-ax2 ( ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) → ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) )
3 tbwlem4 ( ( ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) → ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) ) → ( ( ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) → ⊥ ) → ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) ) )
4 2 3 ax-mp ( ( ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) → ⊥ ) → ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) )
5 1 4 ax-mp ( ( 𝜑 → ⊥ ) → ¬ 𝜑 )
6 tbw-ax1 ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ( ( ¬ 𝜑𝜑 ) → ( ( 𝜑 → ⊥ ) → 𝜑 ) ) )
7 5 6 ax-mp ( ( ¬ 𝜑𝜑 ) → ( ( 𝜑 → ⊥ ) → 𝜑 ) )
8 tbw-ax3 ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 )
9 7 8 tbwsyl ( ( ¬ 𝜑𝜑 ) → 𝜑 )