Metamath Proof Explorer


Theorem re1r

Description: The multiplicative neutral element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017)

Ref Expression
Assertion re1r 1 = ( 1r ‘ ℝfld )

Proof

Step Hyp Ref Expression
1 resubdrg ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing )
2 1 simpli ℝ ∈ ( SubRing ‘ ℂfld )
3 df-refld fld = ( ℂflds ℝ )
4 cnfld1 1 = ( 1r ‘ ℂfld )
5 3 4 subrg1 ( ℝ ∈ ( SubRing ‘ ℂfld ) → 1 = ( 1r ‘ ℝfld ) )
6 2 5 ax-mp 1 = ( 1r ‘ ℝfld )