Metamath Proof Explorer
Description: The multiplicative neutral element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017)
|
|
Ref |
Expression |
|
Assertion |
re1r |
⊢ 1 = ( 1r ‘ ℝfld ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
2 |
1
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
3 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
4 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
5 |
3 4
|
subrg1 |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) → 1 = ( 1r ‘ ℝfld ) ) |
6 |
2 5
|
ax-mp |
⊢ 1 = ( 1r ‘ ℝfld ) |