Step |
Hyp |
Ref |
Expression |
1 |
|
mercolem8 |
⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → ( 𝜑 → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) ) |
2 |
|
mercolem3 |
⊢ ( ( 𝜓 → 𝜒 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) |
3 |
|
mercolem6 |
⊢ ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → ( 𝜑 → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) ) → ( ( 𝜓 → ( 𝜑 → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) ) |
4 |
1 2 3
|
mpsyl |
⊢ ( ( 𝜓 → 𝜒 ) → ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) |
5 |
|
mercolem6 |
⊢ ( ( ( 𝜓 → 𝜒 ) → ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) → ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) |