Metamath Proof Explorer


Theorem re1tbw1

Description: tbw-ax1 rederived from merco2 . (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion re1tbw1 ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 mercolem8 ( ( 𝜑𝜓 ) → ( ( 𝜓 → ( 𝜑𝜒 ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) ) )
2 mercolem3 ( ( 𝜓𝜒 ) → ( 𝜓 → ( 𝜑𝜒 ) ) )
3 mercolem6 ( ( ( 𝜑𝜓 ) → ( ( 𝜓 → ( 𝜑𝜒 ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) ) ) → ( ( 𝜓 → ( 𝜑𝜒 ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) ) )
4 1 2 3 mpsyl ( ( 𝜓𝜒 ) → ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) )
5 mercolem6 ( ( ( 𝜓𝜒 ) → ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) )
6 4 5 ax-mp ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) )