Metamath Proof Explorer


Theorem re1tbw2

Description: tbw-ax2 rederived from merco2 . (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion re1tbw2 ( 𝜑 → ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 mercolem1 ( ( ( 𝜑𝜑 ) → 𝜑 ) → ( 𝜑 → ( 𝜓𝜑 ) ) )
2 mercolem1 ( ( ( ( 𝜑𝜑 ) → 𝜑 ) → ( 𝜑 → ( 𝜓𝜑 ) ) ) → ( 𝜑 → ( 𝜓 → ( 𝜑 → ( 𝜓𝜑 ) ) ) ) )
3 1 2 ax-mp ( 𝜑 → ( 𝜓 → ( 𝜑 → ( 𝜓𝜑 ) ) ) )
4 mercolem6 ( ( 𝜑 → ( 𝜓 → ( 𝜑 → ( 𝜓𝜑 ) ) ) ) → ( 𝜓 → ( 𝜑 → ( 𝜓𝜑 ) ) ) )
5 3 4 ax-mp ( 𝜓 → ( 𝜑 → ( 𝜓𝜑 ) ) )
6 mercolem6 ( ( 𝜓 → ( 𝜑 → ( 𝜓𝜑 ) ) ) → ( 𝜑 → ( 𝜓𝜑 ) ) )
7 5 6 ax-mp ( 𝜑 → ( 𝜓𝜑 ) )