| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mercolem2 | 
							⊢ ( ( ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							mercolem2 | 
							⊢ ( ( ( 𝜑  →  𝜓 )  →  𝜑 )  →  ( ( ( ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜑 )  →  𝜑 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							mercolem6 | 
							⊢ ( ( ( ( 𝜑  →  𝜓 )  →  𝜑 )  →  ( ( ( ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜑 )  →  𝜑 ) ) )  →  ( ( ( ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜑 )  →  𝜑 ) ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							ax-mp | 
							⊢ ( ( ( ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜑 )  →  𝜑 ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							ax-mp | 
							⊢ ( ( ( 𝜑  →  𝜓 )  →  𝜑 )  →  𝜑 )  |