Metamath Proof Explorer


Theorem re1tbw4

Description: tbw-ax4 rederived from merco2 .

This theorem, along with re1tbw1 , re1tbw2 , and re1tbw3 , shows that merco2 , along with ax-mp , can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion re1tbw4 ( ⊥ → 𝜑 )

Proof

Step Hyp Ref Expression
1 re1tbw3 ( ( ( 𝜑𝜑 ) → 𝜑 ) → 𝜑 )
2 re1tbw2 ( 𝜑 → ( ( 𝜑𝜑 ) → 𝜑 ) )
3 re1tbw1 ( ( 𝜑 → ( ( 𝜑𝜑 ) → 𝜑 ) ) → ( ( ( ( 𝜑𝜑 ) → 𝜑 ) → 𝜑 ) → ( 𝜑𝜑 ) ) )
4 2 3 ax-mp ( ( ( ( 𝜑𝜑 ) → 𝜑 ) → 𝜑 ) → ( 𝜑𝜑 ) )
5 1 4 ax-mp ( 𝜑𝜑 )
6 re1tbw3 ( ( ( ( ⊥ → 𝜑 ) → 𝜑 ) → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) )
7 re1tbw2 ( ( ⊥ → 𝜑 ) → ( ( ( ⊥ → 𝜑 ) → 𝜑 ) → ( ⊥ → 𝜑 ) ) )
8 re1tbw1 ( ( ( ⊥ → 𝜑 ) → ( ( ( ⊥ → 𝜑 ) → 𝜑 ) → ( ⊥ → 𝜑 ) ) ) → ( ( ( ( ( ⊥ → 𝜑 ) → 𝜑 ) → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) ) → ( ( ⊥ → 𝜑 ) → ( ⊥ → 𝜑 ) ) ) )
9 7 8 ax-mp ( ( ( ( ( ⊥ → 𝜑 ) → 𝜑 ) → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) ) → ( ( ⊥ → 𝜑 ) → ( ⊥ → 𝜑 ) ) )
10 6 9 ax-mp ( ( ⊥ → 𝜑 ) → ( ⊥ → 𝜑 ) )
11 mercolem3 ( ( ( ⊥ → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → ( ⊥ → 𝜑 ) ) )
12 merco2 ( ( ( ( ⊥ → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → ( ⊥ → 𝜑 ) ) ) → ( ( ( ⊥ → 𝜑 ) → ( ⊥ → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( ( 𝜑𝜑 ) → ( ⊥ → 𝜑 ) ) ) ) )
13 11 12 ax-mp ( ( ( ⊥ → 𝜑 ) → ( ⊥ → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( ( 𝜑𝜑 ) → ( ⊥ → 𝜑 ) ) ) )
14 10 13 ax-mp ( ( 𝜑𝜑 ) → ( ( 𝜑𝜑 ) → ( ⊥ → 𝜑 ) ) )
15 5 14 ax-mp ( ( 𝜑𝜑 ) → ( ⊥ → 𝜑 ) )
16 5 15 ax-mp ( ⊥ → 𝜑 )