Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) |
2 |
1
|
tgqioo |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) |
3 |
|
qtopbas |
⊢ ( (,) “ ( ℚ × ℚ ) ) ∈ TopBases |
4 |
|
omelon |
⊢ ω ∈ On |
5 |
|
qnnen |
⊢ ℚ ≈ ℕ |
6 |
|
xpen |
⊢ ( ( ℚ ≈ ℕ ∧ ℚ ≈ ℕ ) → ( ℚ × ℚ ) ≈ ( ℕ × ℕ ) ) |
7 |
5 5 6
|
mp2an |
⊢ ( ℚ × ℚ ) ≈ ( ℕ × ℕ ) |
8 |
|
xpnnen |
⊢ ( ℕ × ℕ ) ≈ ℕ |
9 |
7 8
|
entri |
⊢ ( ℚ × ℚ ) ≈ ℕ |
10 |
|
nnenom |
⊢ ℕ ≈ ω |
11 |
9 10
|
entr2i |
⊢ ω ≈ ( ℚ × ℚ ) |
12 |
|
isnumi |
⊢ ( ( ω ∈ On ∧ ω ≈ ( ℚ × ℚ ) ) → ( ℚ × ℚ ) ∈ dom card ) |
13 |
4 11 12
|
mp2an |
⊢ ( ℚ × ℚ ) ∈ dom card |
14 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
15 |
|
ffun |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → Fun (,) ) |
16 |
14 15
|
ax-mp |
⊢ Fun (,) |
17 |
|
qssre |
⊢ ℚ ⊆ ℝ |
18 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
19 |
17 18
|
sstri |
⊢ ℚ ⊆ ℝ* |
20 |
|
xpss12 |
⊢ ( ( ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ* ) → ( ℚ × ℚ ) ⊆ ( ℝ* × ℝ* ) ) |
21 |
19 19 20
|
mp2an |
⊢ ( ℚ × ℚ ) ⊆ ( ℝ* × ℝ* ) |
22 |
14
|
fdmi |
⊢ dom (,) = ( ℝ* × ℝ* ) |
23 |
21 22
|
sseqtrri |
⊢ ( ℚ × ℚ ) ⊆ dom (,) |
24 |
|
fores |
⊢ ( ( Fun (,) ∧ ( ℚ × ℚ ) ⊆ dom (,) ) → ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) ) |
25 |
16 23 24
|
mp2an |
⊢ ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) |
26 |
|
fodomnum |
⊢ ( ( ℚ × ℚ ) ∈ dom card → ( ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) → ( (,) “ ( ℚ × ℚ ) ) ≼ ( ℚ × ℚ ) ) ) |
27 |
13 25 26
|
mp2 |
⊢ ( (,) “ ( ℚ × ℚ ) ) ≼ ( ℚ × ℚ ) |
28 |
9 10
|
entri |
⊢ ( ℚ × ℚ ) ≈ ω |
29 |
|
domentr |
⊢ ( ( ( (,) “ ( ℚ × ℚ ) ) ≼ ( ℚ × ℚ ) ∧ ( ℚ × ℚ ) ≈ ω ) → ( (,) “ ( ℚ × ℚ ) ) ≼ ω ) |
30 |
27 28 29
|
mp2an |
⊢ ( (,) “ ( ℚ × ℚ ) ) ≼ ω |
31 |
|
2ndci |
⊢ ( ( ( (,) “ ( ℚ × ℚ ) ) ∈ TopBases ∧ ( (,) “ ( ℚ × ℚ ) ) ≼ ω ) → ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ∈ 2ndω ) |
32 |
3 30 31
|
mp2an |
⊢ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ∈ 2ndω |
33 |
2 32
|
eqeltri |
⊢ ( topGen ‘ ran (,) ) ∈ 2ndω |