| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) )  =  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) ) | 
						
							| 2 | 1 | tgqioo | ⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) ) | 
						
							| 3 |  | qtopbas | ⊢ ( (,)  “  ( ℚ  ×  ℚ ) )  ∈  TopBases | 
						
							| 4 |  | omelon | ⊢ ω  ∈  On | 
						
							| 5 |  | qnnen | ⊢ ℚ  ≈  ℕ | 
						
							| 6 |  | xpen | ⊢ ( ( ℚ  ≈  ℕ  ∧  ℚ  ≈  ℕ )  →  ( ℚ  ×  ℚ )  ≈  ( ℕ  ×  ℕ ) ) | 
						
							| 7 | 5 5 6 | mp2an | ⊢ ( ℚ  ×  ℚ )  ≈  ( ℕ  ×  ℕ ) | 
						
							| 8 |  | xpnnen | ⊢ ( ℕ  ×  ℕ )  ≈  ℕ | 
						
							| 9 | 7 8 | entri | ⊢ ( ℚ  ×  ℚ )  ≈  ℕ | 
						
							| 10 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 11 | 9 10 | entr2i | ⊢ ω  ≈  ( ℚ  ×  ℚ ) | 
						
							| 12 |  | isnumi | ⊢ ( ( ω  ∈  On  ∧  ω  ≈  ( ℚ  ×  ℚ ) )  →  ( ℚ  ×  ℚ )  ∈  dom  card ) | 
						
							| 13 | 4 11 12 | mp2an | ⊢ ( ℚ  ×  ℚ )  ∈  dom  card | 
						
							| 14 |  | ioof | ⊢ (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ | 
						
							| 15 |  | ffun | ⊢ ( (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ  →  Fun  (,) ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ Fun  (,) | 
						
							| 17 |  | qssre | ⊢ ℚ  ⊆  ℝ | 
						
							| 18 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 19 | 17 18 | sstri | ⊢ ℚ  ⊆  ℝ* | 
						
							| 20 |  | xpss12 | ⊢ ( ( ℚ  ⊆  ℝ*  ∧  ℚ  ⊆  ℝ* )  →  ( ℚ  ×  ℚ )  ⊆  ( ℝ*  ×  ℝ* ) ) | 
						
							| 21 | 19 19 20 | mp2an | ⊢ ( ℚ  ×  ℚ )  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 22 | 14 | fdmi | ⊢ dom  (,)  =  ( ℝ*  ×  ℝ* ) | 
						
							| 23 | 21 22 | sseqtrri | ⊢ ( ℚ  ×  ℚ )  ⊆  dom  (,) | 
						
							| 24 |  | fores | ⊢ ( ( Fun  (,)  ∧  ( ℚ  ×  ℚ )  ⊆  dom  (,) )  →  ( (,)  ↾  ( ℚ  ×  ℚ ) ) : ( ℚ  ×  ℚ ) –onto→ ( (,)  “  ( ℚ  ×  ℚ ) ) ) | 
						
							| 25 | 16 23 24 | mp2an | ⊢ ( (,)  ↾  ( ℚ  ×  ℚ ) ) : ( ℚ  ×  ℚ ) –onto→ ( (,)  “  ( ℚ  ×  ℚ ) ) | 
						
							| 26 |  | fodomnum | ⊢ ( ( ℚ  ×  ℚ )  ∈  dom  card  →  ( ( (,)  ↾  ( ℚ  ×  ℚ ) ) : ( ℚ  ×  ℚ ) –onto→ ( (,)  “  ( ℚ  ×  ℚ ) )  →  ( (,)  “  ( ℚ  ×  ℚ ) )  ≼  ( ℚ  ×  ℚ ) ) ) | 
						
							| 27 | 13 25 26 | mp2 | ⊢ ( (,)  “  ( ℚ  ×  ℚ ) )  ≼  ( ℚ  ×  ℚ ) | 
						
							| 28 | 9 10 | entri | ⊢ ( ℚ  ×  ℚ )  ≈  ω | 
						
							| 29 |  | domentr | ⊢ ( ( ( (,)  “  ( ℚ  ×  ℚ ) )  ≼  ( ℚ  ×  ℚ )  ∧  ( ℚ  ×  ℚ )  ≈  ω )  →  ( (,)  “  ( ℚ  ×  ℚ ) )  ≼  ω ) | 
						
							| 30 | 27 28 29 | mp2an | ⊢ ( (,)  “  ( ℚ  ×  ℚ ) )  ≼  ω | 
						
							| 31 |  | 2ndci | ⊢ ( ( ( (,)  “  ( ℚ  ×  ℚ ) )  ∈  TopBases  ∧  ( (,)  “  ( ℚ  ×  ℚ ) )  ≼  ω )  →  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) )  ∈  2ndω ) | 
						
							| 32 | 3 30 31 | mp2an | ⊢ ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) )  ∈  2ndω | 
						
							| 33 | 2 32 | eqeltri | ⊢ ( topGen ‘ ran  (,) )  ∈  2ndω |