| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 3 |
2
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 4 |
|
ax-icn |
⊢ i ∈ ℂ |
| 5 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 7 |
6
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 8 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 9 |
4 7 8
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 10 |
|
recl |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 12 |
11
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 13 |
|
imcl |
⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 15 |
14
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 16 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 17 |
4 15 16
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 18 |
3 9 12 17
|
add4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) + ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 19 |
|
replim |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 20 |
|
replim |
⊢ ( 𝐵 ∈ ℂ → 𝐵 = ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) |
| 21 |
19 20
|
oveqan12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) + ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 22 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → i ∈ ℂ ) |
| 23 |
22 7 15
|
adddid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) = ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) |
| 24 |
23
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) + ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 25 |
18 21 24
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) + ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 26 |
25
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 + 𝐵 ) ) = ( ℜ ‘ ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) + ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) ) ) ) |
| 27 |
|
readdcl |
⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ ( ℜ ‘ 𝐵 ) ∈ ℝ ) → ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ∈ ℝ ) |
| 28 |
1 10 27
|
syl2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ∈ ℝ ) |
| 29 |
|
readdcl |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ ( ℑ ‘ 𝐵 ) ∈ ℝ ) → ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ∈ ℝ ) |
| 30 |
5 13 29
|
syl2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ∈ ℝ ) |
| 31 |
|
crre |
⊢ ( ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ∈ ℝ ∧ ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ∈ ℝ ) → ( ℜ ‘ ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) + ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ) |
| 32 |
28 30 31
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) + ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ) |
| 33 |
26 32
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ) |