Metamath Proof Explorer


Theorem readdcl

Description: Alias for ax-addrcl , for naming consistency with readdcli . (Contributed by NM, 10-Mar-2008)

Ref Expression
Assertion readdcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 ax-addrcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ )