Metamath Proof Explorer


Theorem readdcld

Description: Closure law for addition of reals. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses recnd.1 ( 𝜑𝐴 ∈ ℝ )
readdcld.2 ( 𝜑𝐵 ∈ ℝ )
Assertion readdcld ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 recnd.1 ( 𝜑𝐴 ∈ ℝ )
2 readdcld.2 ( 𝜑𝐵 ∈ ℝ )
3 readdcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ )