| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| 2 |
|
zbtwnre |
⊢ ( - 𝐴 ∈ ℝ → ∃! 𝑦 ∈ ℤ ( - 𝐴 ≤ 𝑦 ∧ 𝑦 < ( - 𝐴 + 1 ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℝ → ∃! 𝑦 ∈ ℤ ( - 𝐴 ≤ 𝑦 ∧ 𝑦 < ( - 𝐴 + 1 ) ) ) |
| 4 |
|
znegcl |
⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) |
| 5 |
|
znegcl |
⊢ ( 𝑦 ∈ ℤ → - 𝑦 ∈ ℤ ) |
| 6 |
|
zcn |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) |
| 7 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
| 8 |
|
negcon2 |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑦 = - 𝑥 ↔ 𝑥 = - 𝑦 ) ) |
| 9 |
6 7 8
|
syl2an |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑦 = - 𝑥 ↔ 𝑥 = - 𝑦 ) ) |
| 10 |
5 9
|
reuhyp |
⊢ ( 𝑦 ∈ ℤ → ∃! 𝑥 ∈ ℤ 𝑦 = - 𝑥 ) |
| 11 |
|
breq2 |
⊢ ( 𝑦 = - 𝑥 → ( - 𝐴 ≤ 𝑦 ↔ - 𝐴 ≤ - 𝑥 ) ) |
| 12 |
|
breq1 |
⊢ ( 𝑦 = - 𝑥 → ( 𝑦 < ( - 𝐴 + 1 ) ↔ - 𝑥 < ( - 𝐴 + 1 ) ) ) |
| 13 |
11 12
|
anbi12d |
⊢ ( 𝑦 = - 𝑥 → ( ( - 𝐴 ≤ 𝑦 ∧ 𝑦 < ( - 𝐴 + 1 ) ) ↔ ( - 𝐴 ≤ - 𝑥 ∧ - 𝑥 < ( - 𝐴 + 1 ) ) ) ) |
| 14 |
4 10 13
|
reuxfr1 |
⊢ ( ∃! 𝑦 ∈ ℤ ( - 𝐴 ≤ 𝑦 ∧ 𝑦 < ( - 𝐴 + 1 ) ) ↔ ∃! 𝑥 ∈ ℤ ( - 𝐴 ≤ - 𝑥 ∧ - 𝑥 < ( - 𝐴 + 1 ) ) ) |
| 15 |
|
zre |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) |
| 16 |
|
leneg |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑥 ≤ 𝐴 ↔ - 𝐴 ≤ - 𝑥 ) ) |
| 17 |
16
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ≤ 𝐴 ↔ - 𝐴 ≤ - 𝑥 ) ) |
| 18 |
|
peano2rem |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − 1 ) ∈ ℝ ) |
| 19 |
|
ltneg |
⊢ ( ( ( 𝐴 − 1 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 − 1 ) < 𝑥 ↔ - 𝑥 < - ( 𝐴 − 1 ) ) ) |
| 20 |
18 19
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 − 1 ) < 𝑥 ↔ - 𝑥 < - ( 𝐴 − 1 ) ) ) |
| 21 |
|
1re |
⊢ 1 ∈ ℝ |
| 22 |
|
ltsubadd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 − 1 ) < 𝑥 ↔ 𝐴 < ( 𝑥 + 1 ) ) ) |
| 23 |
21 22
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 − 1 ) < 𝑥 ↔ 𝐴 < ( 𝑥 + 1 ) ) ) |
| 24 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 25 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 26 |
|
negsubdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → - ( 𝐴 − 1 ) = ( - 𝐴 + 1 ) ) |
| 27 |
24 25 26
|
sylancl |
⊢ ( 𝐴 ∈ ℝ → - ( 𝐴 − 1 ) = ( - 𝐴 + 1 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → - ( 𝐴 − 1 ) = ( - 𝐴 + 1 ) ) |
| 29 |
28
|
breq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( - 𝑥 < - ( 𝐴 − 1 ) ↔ - 𝑥 < ( - 𝐴 + 1 ) ) ) |
| 30 |
20 23 29
|
3bitr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 < ( 𝑥 + 1 ) ↔ - 𝑥 < ( - 𝐴 + 1 ) ) ) |
| 31 |
17 30
|
anbi12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ↔ ( - 𝐴 ≤ - 𝑥 ∧ - 𝑥 < ( - 𝐴 + 1 ) ) ) ) |
| 32 |
15 31
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ↔ ( - 𝐴 ≤ - 𝑥 ∧ - 𝑥 < ( - 𝐴 + 1 ) ) ) ) |
| 33 |
32
|
bicomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ( - 𝐴 ≤ - 𝑥 ∧ - 𝑥 < ( - 𝐴 + 1 ) ) ↔ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) |
| 34 |
33
|
reubidva |
⊢ ( 𝐴 ∈ ℝ → ( ∃! 𝑥 ∈ ℤ ( - 𝐴 ≤ - 𝑥 ∧ - 𝑥 < ( - 𝐴 + 1 ) ) ↔ ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) |
| 35 |
14 34
|
bitrid |
⊢ ( 𝐴 ∈ ℝ → ( ∃! 𝑦 ∈ ℤ ( - 𝐴 ≤ 𝑦 ∧ 𝑦 < ( - 𝐴 + 1 ) ) ↔ ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) |
| 36 |
3 35
|
mpbid |
⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) |