| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1cnd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  1  ∈  ℂ ) | 
						
							| 2 |  | reccl | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( 1  /  𝐵 )  ∈  ℂ ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( 1  /  𝐵 )  ∈  ℂ ) | 
						
							| 4 |  | simpl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 ) ) | 
						
							| 5 |  | divmul | ⊢ ( ( 1  ∈  ℂ  ∧  ( 1  /  𝐵 )  ∈  ℂ  ∧  ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 ) )  →  ( ( 1  /  𝐴 )  =  ( 1  /  𝐵 )  ↔  ( 𝐴  ·  ( 1  /  𝐵 ) )  =  1 ) ) | 
						
							| 6 | 1 3 4 5 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( ( 1  /  𝐴 )  =  ( 1  /  𝐵 )  ↔  ( 𝐴  ·  ( 1  /  𝐵 ) )  =  1 ) ) | 
						
							| 7 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 8 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 9 |  | simprr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  𝐵  ≠  0 ) | 
						
							| 10 |  | divrec | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( 𝐴  /  𝐵 )  =  ( 𝐴  ·  ( 1  /  𝐵 ) ) ) | 
						
							| 11 | 7 8 9 10 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( 𝐴  /  𝐵 )  =  ( 𝐴  ·  ( 1  /  𝐵 ) ) ) | 
						
							| 12 | 11 | eqeq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( ( 𝐴  /  𝐵 )  =  1  ↔  ( 𝐴  ·  ( 1  /  𝐵 ) )  =  1 ) ) | 
						
							| 13 |  | diveq1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( ( 𝐴  /  𝐵 )  =  1  ↔  𝐴  =  𝐵 ) ) | 
						
							| 14 | 7 8 9 13 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( ( 𝐴  /  𝐵 )  =  1  ↔  𝐴  =  𝐵 ) ) | 
						
							| 15 | 6 12 14 | 3bitr2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( ( 1  /  𝐴 )  =  ( 1  /  𝐵 )  ↔  𝐴  =  𝐵 ) ) |