Metamath Proof Explorer
Description: Reciprocal is one-to-one. (Contributed by NM, 16-Sep-1999)
|
|
Ref |
Expression |
|
Hypotheses |
divclz.1 |
⊢ 𝐴 ∈ ℂ |
|
|
divclz.2 |
⊢ 𝐵 ∈ ℂ |
|
|
divneq0.3 |
⊢ 𝐴 ≠ 0 |
|
|
divneq0.4 |
⊢ 𝐵 ≠ 0 |
|
Assertion |
rec11ii |
⊢ ( ( 1 / 𝐴 ) = ( 1 / 𝐵 ) ↔ 𝐴 = 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
divclz.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
divclz.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
divneq0.3 |
⊢ 𝐴 ≠ 0 |
4 |
|
divneq0.4 |
⊢ 𝐵 ≠ 0 |
5 |
1 2
|
rec11i |
⊢ ( ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) → ( ( 1 / 𝐴 ) = ( 1 / 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
6 |
3 4 5
|
mp2an |
⊢ ( ( 1 / 𝐴 ) = ( 1 / 𝐵 ) ↔ 𝐴 = 𝐵 ) |