Metamath Proof Explorer
		
		
		
		Description:  Reciprocal is one-to-one.  (Contributed by NM, 16-Sep-1999)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | divclz.1 | ⊢ 𝐴  ∈  ℂ | 
					
						|  |  | divclz.2 | ⊢ 𝐵  ∈  ℂ | 
					
						|  |  | divneq0.3 | ⊢ 𝐴  ≠  0 | 
					
						|  |  | divneq0.4 | ⊢ 𝐵  ≠  0 | 
				
					|  | Assertion | rec11ii | ⊢  ( ( 1  /  𝐴 )  =  ( 1  /  𝐵 )  ↔  𝐴  =  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divclz.1 | ⊢ 𝐴  ∈  ℂ | 
						
							| 2 |  | divclz.2 | ⊢ 𝐵  ∈  ℂ | 
						
							| 3 |  | divneq0.3 | ⊢ 𝐴  ≠  0 | 
						
							| 4 |  | divneq0.4 | ⊢ 𝐵  ≠  0 | 
						
							| 5 | 1 2 | rec11i | ⊢ ( ( 𝐴  ≠  0  ∧  𝐵  ≠  0 )  →  ( ( 1  /  𝐴 )  =  ( 1  /  𝐵 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 6 | 3 4 5 | mp2an | ⊢ ( ( 1  /  𝐴 )  =  ( 1  /  𝐵 )  ↔  𝐴  =  𝐵 ) |