Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
2 |
|
fvoveq1 |
⊢ ( 𝑥 = 1 → ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 1 · 𝐴 ) ) ) |
3 |
|
fvoveq1 |
⊢ ( 𝑥 = 1 → ( ℜ ‘ ( 𝑥 · 𝐵 ) ) = ( ℜ ‘ ( 1 · 𝐵 ) ) ) |
4 |
2 3
|
eqeq12d |
⊢ ( 𝑥 = 1 → ( ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) ↔ ( ℜ ‘ ( 1 · 𝐴 ) ) = ( ℜ ‘ ( 1 · 𝐵 ) ) ) ) |
5 |
4
|
rspcv |
⊢ ( 1 ∈ ℂ → ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) → ( ℜ ‘ ( 1 · 𝐴 ) ) = ( ℜ ‘ ( 1 · 𝐵 ) ) ) ) |
6 |
1 5
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) → ( ℜ ‘ ( 1 · 𝐴 ) ) = ( ℜ ‘ ( 1 · 𝐵 ) ) ) |
7 |
|
negicn |
⊢ - i ∈ ℂ |
8 |
|
fvoveq1 |
⊢ ( 𝑥 = - i → ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( - i · 𝐴 ) ) ) |
9 |
|
fvoveq1 |
⊢ ( 𝑥 = - i → ( ℜ ‘ ( 𝑥 · 𝐵 ) ) = ( ℜ ‘ ( - i · 𝐵 ) ) ) |
10 |
8 9
|
eqeq12d |
⊢ ( 𝑥 = - i → ( ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) ↔ ( ℜ ‘ ( - i · 𝐴 ) ) = ( ℜ ‘ ( - i · 𝐵 ) ) ) ) |
11 |
10
|
rspcv |
⊢ ( - i ∈ ℂ → ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) → ( ℜ ‘ ( - i · 𝐴 ) ) = ( ℜ ‘ ( - i · 𝐵 ) ) ) ) |
12 |
7 11
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) → ( ℜ ‘ ( - i · 𝐴 ) ) = ( ℜ ‘ ( - i · 𝐵 ) ) ) |
13 |
12
|
oveq2d |
⊢ ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) → ( i · ( ℜ ‘ ( - i · 𝐴 ) ) ) = ( i · ( ℜ ‘ ( - i · 𝐵 ) ) ) ) |
14 |
6 13
|
oveq12d |
⊢ ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) → ( ( ℜ ‘ ( 1 · 𝐴 ) ) + ( i · ( ℜ ‘ ( - i · 𝐴 ) ) ) ) = ( ( ℜ ‘ ( 1 · 𝐵 ) ) + ( i · ( ℜ ‘ ( - i · 𝐵 ) ) ) ) ) |
15 |
|
replim |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
16 |
|
mulid2 |
⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) |
17 |
16
|
eqcomd |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( 1 · 𝐴 ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = ( ℜ ‘ ( 1 · 𝐴 ) ) ) |
19 |
|
imre |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ℜ ‘ ( - i · 𝐴 ) ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) = ( i · ( ℜ ‘ ( - i · 𝐴 ) ) ) ) |
21 |
18 20
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ ( 1 · 𝐴 ) ) + ( i · ( ℜ ‘ ( - i · 𝐴 ) ) ) ) ) |
22 |
15 21
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ ( 1 · 𝐴 ) ) + ( i · ( ℜ ‘ ( - i · 𝐴 ) ) ) ) ) |
23 |
|
replim |
⊢ ( 𝐵 ∈ ℂ → 𝐵 = ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) |
24 |
|
mulid2 |
⊢ ( 𝐵 ∈ ℂ → ( 1 · 𝐵 ) = 𝐵 ) |
25 |
24
|
eqcomd |
⊢ ( 𝐵 ∈ ℂ → 𝐵 = ( 1 · 𝐵 ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) = ( ℜ ‘ ( 1 · 𝐵 ) ) ) |
27 |
|
imre |
⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) = ( ℜ ‘ ( - i · 𝐵 ) ) ) |
28 |
27
|
oveq2d |
⊢ ( 𝐵 ∈ ℂ → ( i · ( ℑ ‘ 𝐵 ) ) = ( i · ( ℜ ‘ ( - i · 𝐵 ) ) ) ) |
29 |
26 28
|
oveq12d |
⊢ ( 𝐵 ∈ ℂ → ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) = ( ( ℜ ‘ ( 1 · 𝐵 ) ) + ( i · ( ℜ ‘ ( - i · 𝐵 ) ) ) ) ) |
30 |
23 29
|
eqtrd |
⊢ ( 𝐵 ∈ ℂ → 𝐵 = ( ( ℜ ‘ ( 1 · 𝐵 ) ) + ( i · ( ℜ ‘ ( - i · 𝐵 ) ) ) ) ) |
31 |
22 30
|
eqeqan12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 = 𝐵 ↔ ( ( ℜ ‘ ( 1 · 𝐴 ) ) + ( i · ( ℜ ‘ ( - i · 𝐴 ) ) ) ) = ( ( ℜ ‘ ( 1 · 𝐵 ) ) + ( i · ( ℜ ‘ ( - i · 𝐵 ) ) ) ) ) ) |
32 |
14 31
|
syl5ibr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) → 𝐴 = 𝐵 ) ) |
33 |
|
oveq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑥 · 𝐴 ) = ( 𝑥 · 𝐵 ) ) |
34 |
33
|
fveq2d |
⊢ ( 𝐴 = 𝐵 → ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) ) |
35 |
34
|
ralrimivw |
⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) ) |
36 |
32 35
|
impbid1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∀ 𝑥 ∈ ℂ ( ℜ ‘ ( 𝑥 · 𝐴 ) ) = ( ℜ ‘ ( 𝑥 · 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) |