| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 2 |  | fvoveq1 | ⊢ ( 𝑥  =  1  →  ( ℜ ‘ ( 𝑥  ·  𝐴 ) )  =  ( ℜ ‘ ( 1  ·  𝐴 ) ) ) | 
						
							| 3 |  | fvoveq1 | ⊢ ( 𝑥  =  1  →  ( ℜ ‘ ( 𝑥  ·  𝐵 ) )  =  ( ℜ ‘ ( 1  ·  𝐵 ) ) ) | 
						
							| 4 | 2 3 | eqeq12d | ⊢ ( 𝑥  =  1  →  ( ( ℜ ‘ ( 𝑥  ·  𝐴 ) )  =  ( ℜ ‘ ( 𝑥  ·  𝐵 ) )  ↔  ( ℜ ‘ ( 1  ·  𝐴 ) )  =  ( ℜ ‘ ( 1  ·  𝐵 ) ) ) ) | 
						
							| 5 | 4 | rspcv | ⊢ ( 1  ∈  ℂ  →  ( ∀ 𝑥  ∈  ℂ ( ℜ ‘ ( 𝑥  ·  𝐴 ) )  =  ( ℜ ‘ ( 𝑥  ·  𝐵 ) )  →  ( ℜ ‘ ( 1  ·  𝐴 ) )  =  ( ℜ ‘ ( 1  ·  𝐵 ) ) ) ) | 
						
							| 6 | 1 5 | ax-mp | ⊢ ( ∀ 𝑥  ∈  ℂ ( ℜ ‘ ( 𝑥  ·  𝐴 ) )  =  ( ℜ ‘ ( 𝑥  ·  𝐵 ) )  →  ( ℜ ‘ ( 1  ·  𝐴 ) )  =  ( ℜ ‘ ( 1  ·  𝐵 ) ) ) | 
						
							| 7 |  | negicn | ⊢ - i  ∈  ℂ | 
						
							| 8 |  | fvoveq1 | ⊢ ( 𝑥  =  - i  →  ( ℜ ‘ ( 𝑥  ·  𝐴 ) )  =  ( ℜ ‘ ( - i  ·  𝐴 ) ) ) | 
						
							| 9 |  | fvoveq1 | ⊢ ( 𝑥  =  - i  →  ( ℜ ‘ ( 𝑥  ·  𝐵 ) )  =  ( ℜ ‘ ( - i  ·  𝐵 ) ) ) | 
						
							| 10 | 8 9 | eqeq12d | ⊢ ( 𝑥  =  - i  →  ( ( ℜ ‘ ( 𝑥  ·  𝐴 ) )  =  ( ℜ ‘ ( 𝑥  ·  𝐵 ) )  ↔  ( ℜ ‘ ( - i  ·  𝐴 ) )  =  ( ℜ ‘ ( - i  ·  𝐵 ) ) ) ) | 
						
							| 11 | 10 | rspcv | ⊢ ( - i  ∈  ℂ  →  ( ∀ 𝑥  ∈  ℂ ( ℜ ‘ ( 𝑥  ·  𝐴 ) )  =  ( ℜ ‘ ( 𝑥  ·  𝐵 ) )  →  ( ℜ ‘ ( - i  ·  𝐴 ) )  =  ( ℜ ‘ ( - i  ·  𝐵 ) ) ) ) | 
						
							| 12 | 7 11 | ax-mp | ⊢ ( ∀ 𝑥  ∈  ℂ ( ℜ ‘ ( 𝑥  ·  𝐴 ) )  =  ( ℜ ‘ ( 𝑥  ·  𝐵 ) )  →  ( ℜ ‘ ( - i  ·  𝐴 ) )  =  ( ℜ ‘ ( - i  ·  𝐵 ) ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( ∀ 𝑥  ∈  ℂ ( ℜ ‘ ( 𝑥  ·  𝐴 ) )  =  ( ℜ ‘ ( 𝑥  ·  𝐵 ) )  →  ( i  ·  ( ℜ ‘ ( - i  ·  𝐴 ) ) )  =  ( i  ·  ( ℜ ‘ ( - i  ·  𝐵 ) ) ) ) | 
						
							| 14 | 6 13 | oveq12d | ⊢ ( ∀ 𝑥  ∈  ℂ ( ℜ ‘ ( 𝑥  ·  𝐴 ) )  =  ( ℜ ‘ ( 𝑥  ·  𝐵 ) )  →  ( ( ℜ ‘ ( 1  ·  𝐴 ) )  +  ( i  ·  ( ℜ ‘ ( - i  ·  𝐴 ) ) ) )  =  ( ( ℜ ‘ ( 1  ·  𝐵 ) )  +  ( i  ·  ( ℜ ‘ ( - i  ·  𝐵 ) ) ) ) ) | 
						
							| 15 |  | replim | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  =  ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 16 |  | mullid | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 17 | 16 | eqcomd | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  =  ( 1  ·  𝐴 ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  =  ( ℜ ‘ ( 1  ·  𝐴 ) ) ) | 
						
							| 19 |  | imre | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ 𝐴 )  =  ( ℜ ‘ ( - i  ·  𝐴 ) ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  ( ℑ ‘ 𝐴 ) )  =  ( i  ·  ( ℜ ‘ ( - i  ·  𝐴 ) ) ) ) | 
						
							| 21 | 18 20 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) )  =  ( ( ℜ ‘ ( 1  ·  𝐴 ) )  +  ( i  ·  ( ℜ ‘ ( - i  ·  𝐴 ) ) ) ) ) | 
						
							| 22 | 15 21 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  =  ( ( ℜ ‘ ( 1  ·  𝐴 ) )  +  ( i  ·  ( ℜ ‘ ( - i  ·  𝐴 ) ) ) ) ) | 
						
							| 23 |  | replim | ⊢ ( 𝐵  ∈  ℂ  →  𝐵  =  ( ( ℜ ‘ 𝐵 )  +  ( i  ·  ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 24 |  | mullid | ⊢ ( 𝐵  ∈  ℂ  →  ( 1  ·  𝐵 )  =  𝐵 ) | 
						
							| 25 | 24 | eqcomd | ⊢ ( 𝐵  ∈  ℂ  →  𝐵  =  ( 1  ·  𝐵 ) ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝐵  ∈  ℂ  →  ( ℜ ‘ 𝐵 )  =  ( ℜ ‘ ( 1  ·  𝐵 ) ) ) | 
						
							| 27 |  | imre | ⊢ ( 𝐵  ∈  ℂ  →  ( ℑ ‘ 𝐵 )  =  ( ℜ ‘ ( - i  ·  𝐵 ) ) ) | 
						
							| 28 | 27 | oveq2d | ⊢ ( 𝐵  ∈  ℂ  →  ( i  ·  ( ℑ ‘ 𝐵 ) )  =  ( i  ·  ( ℜ ‘ ( - i  ·  𝐵 ) ) ) ) | 
						
							| 29 | 26 28 | oveq12d | ⊢ ( 𝐵  ∈  ℂ  →  ( ( ℜ ‘ 𝐵 )  +  ( i  ·  ( ℑ ‘ 𝐵 ) ) )  =  ( ( ℜ ‘ ( 1  ·  𝐵 ) )  +  ( i  ·  ( ℜ ‘ ( - i  ·  𝐵 ) ) ) ) ) | 
						
							| 30 | 23 29 | eqtrd | ⊢ ( 𝐵  ∈  ℂ  →  𝐵  =  ( ( ℜ ‘ ( 1  ·  𝐵 ) )  +  ( i  ·  ( ℜ ‘ ( - i  ·  𝐵 ) ) ) ) ) | 
						
							| 31 | 22 30 | eqeqan12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  =  𝐵  ↔  ( ( ℜ ‘ ( 1  ·  𝐴 ) )  +  ( i  ·  ( ℜ ‘ ( - i  ·  𝐴 ) ) ) )  =  ( ( ℜ ‘ ( 1  ·  𝐵 ) )  +  ( i  ·  ( ℜ ‘ ( - i  ·  𝐵 ) ) ) ) ) ) | 
						
							| 32 | 14 31 | imbitrrid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ∀ 𝑥  ∈  ℂ ( ℜ ‘ ( 𝑥  ·  𝐴 ) )  =  ( ℜ ‘ ( 𝑥  ·  𝐵 ) )  →  𝐴  =  𝐵 ) ) | 
						
							| 33 |  | oveq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝑥  ·  𝐴 )  =  ( 𝑥  ·  𝐵 ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( 𝐴  =  𝐵  →  ( ℜ ‘ ( 𝑥  ·  𝐴 ) )  =  ( ℜ ‘ ( 𝑥  ·  𝐵 ) ) ) | 
						
							| 35 | 34 | ralrimivw | ⊢ ( 𝐴  =  𝐵  →  ∀ 𝑥  ∈  ℂ ( ℜ ‘ ( 𝑥  ·  𝐴 ) )  =  ( ℜ ‘ ( 𝑥  ·  𝐵 ) ) ) | 
						
							| 36 | 32 35 | impbid1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ∀ 𝑥  ∈  ℂ ( ℜ ‘ ( 𝑥  ·  𝐴 ) )  =  ( ℜ ‘ ( 𝑥  ·  𝐵 ) )  ↔  𝐴  =  𝐵 ) ) |