Description: Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
reccld.2 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
Assertion | reccld | ⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
2 | reccld.2 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
3 | reccl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) | |
4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ ℂ ) |