Description: Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| reccld.2 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| Assertion | reccld | ⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | reccld.2 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 3 | reccl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ ℂ ) |