Metamath Proof Explorer


Theorem reccli

Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005)

Ref Expression
Hypotheses divclz.1 𝐴 ∈ ℂ
reccl.2 𝐴 ≠ 0
Assertion reccli ( 1 / 𝐴 ) ∈ ℂ

Proof

Step Hyp Ref Expression
1 divclz.1 𝐴 ∈ ℂ
2 reccl.2 𝐴 ≠ 0
3 1 recclzi ( 𝐴 ≠ 0 → ( 1 / 𝐴 ) ∈ ℂ )
4 2 3 ax-mp ( 1 / 𝐴 ) ∈ ℂ