Metamath Proof Explorer


Theorem recclnq

Description: Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996) (Revised by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion recclnq ( 𝐴Q → ( *Q𝐴 ) ∈ Q )

Proof

Step Hyp Ref Expression
1 recidnq ( 𝐴Q → ( 𝐴 ·Q ( *Q𝐴 ) ) = 1Q )
2 1nq 1QQ
3 1 2 eqeltrdi ( 𝐴Q → ( 𝐴 ·Q ( *Q𝐴 ) ) ∈ Q )
4 mulnqf ·Q : ( Q × Q ) ⟶ Q
5 4 fdmi dom ·Q = ( Q × Q )
6 0nnq ¬ ∅ ∈ Q
7 5 6 ndmovrcl ( ( 𝐴 ·Q ( *Q𝐴 ) ) ∈ Q → ( 𝐴Q ∧ ( *Q𝐴 ) ∈ Q ) )
8 3 7 syl ( 𝐴Q → ( 𝐴Q ∧ ( *Q𝐴 ) ∈ Q ) )
9 8 simprd ( 𝐴Q → ( *Q𝐴 ) ∈ Q )