Description: Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996) (Revised by Mario Carneiro, 8-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recclnq | ⊢ ( 𝐴 ∈ Q → ( *Q ‘ 𝐴 ) ∈ Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recidnq | ⊢ ( 𝐴 ∈ Q → ( 𝐴 ·Q ( *Q ‘ 𝐴 ) ) = 1Q ) | |
| 2 | 1nq | ⊢ 1Q ∈ Q | |
| 3 | 1 2 | eqeltrdi | ⊢ ( 𝐴 ∈ Q → ( 𝐴 ·Q ( *Q ‘ 𝐴 ) ) ∈ Q ) |
| 4 | mulnqf | ⊢ ·Q : ( Q × Q ) ⟶ Q | |
| 5 | 4 | fdmi | ⊢ dom ·Q = ( Q × Q ) |
| 6 | 0nnq | ⊢ ¬ ∅ ∈ Q | |
| 7 | 5 6 | ndmovrcl | ⊢ ( ( 𝐴 ·Q ( *Q ‘ 𝐴 ) ) ∈ Q → ( 𝐴 ∈ Q ∧ ( *Q ‘ 𝐴 ) ∈ Q ) ) |
| 8 | 3 7 | syl | ⊢ ( 𝐴 ∈ Q → ( 𝐴 ∈ Q ∧ ( *Q ‘ 𝐴 ) ∈ Q ) ) |
| 9 | 8 | simprd | ⊢ ( 𝐴 ∈ Q → ( *Q ‘ 𝐴 ) ∈ Q ) |