| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reccn2.t |
⊢ 𝑇 = ( if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝐵 ) ) · ( ( abs ‘ 𝐴 ) / 2 ) ) |
| 2 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 3 |
|
simpl |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ( ℂ ∖ { 0 } ) ) |
| 4 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
| 5 |
3 4
|
sylib |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
| 6 |
|
absrpcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 8 |
|
rpmulcl |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( ( abs ‘ 𝐴 ) · 𝐵 ) ∈ ℝ+ ) |
| 9 |
7 8
|
sylancom |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) → ( ( abs ‘ 𝐴 ) · 𝐵 ) ∈ ℝ+ ) |
| 10 |
|
ifcl |
⊢ ( ( 1 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) · 𝐵 ) ∈ ℝ+ ) → if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝐵 ) ) ∈ ℝ+ ) |
| 11 |
2 9 10
|
sylancr |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) → if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝐵 ) ) ∈ ℝ+ ) |
| 12 |
7
|
rphalfcld |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) → ( ( abs ‘ 𝐴 ) / 2 ) ∈ ℝ+ ) |
| 13 |
11 12
|
rpmulcld |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) → ( if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝐵 ) ) · ( ( abs ‘ 𝐴 ) / 2 ) ) ∈ ℝ+ ) |
| 14 |
1 13
|
eqeltrid |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) → 𝑇 ∈ ℝ+ ) |
| 15 |
5
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
| 16 |
15
|
simpld |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → 𝐴 ∈ ℂ ) |
| 17 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → 𝑧 ∈ ( ℂ ∖ { 0 } ) ) |
| 18 |
|
eldifsn |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑧 ∈ ℂ ∧ 𝑧 ≠ 0 ) ) |
| 19 |
17 18
|
sylib |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( 𝑧 ∈ ℂ ∧ 𝑧 ≠ 0 ) ) |
| 20 |
19
|
simpld |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → 𝑧 ∈ ℂ ) |
| 21 |
16 20
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( 𝐴 · 𝑧 ) ∈ ℂ ) |
| 22 |
|
mulne0 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑧 ≠ 0 ) ) → ( 𝐴 · 𝑧 ) ≠ 0 ) |
| 23 |
15 19 22
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( 𝐴 · 𝑧 ) ≠ 0 ) |
| 24 |
16 20 21 23
|
divsubdird |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( 𝐴 − 𝑧 ) / ( 𝐴 · 𝑧 ) ) = ( ( 𝐴 / ( 𝐴 · 𝑧 ) ) − ( 𝑧 / ( 𝐴 · 𝑧 ) ) ) ) |
| 25 |
16
|
mulridd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 26 |
25
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( 𝐴 · 1 ) / ( 𝐴 · 𝑧 ) ) = ( 𝐴 / ( 𝐴 · 𝑧 ) ) ) |
| 27 |
|
1cnd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → 1 ∈ ℂ ) |
| 28 |
|
divcan5 |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝑧 ∈ ℂ ∧ 𝑧 ≠ 0 ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( ( 𝐴 · 1 ) / ( 𝐴 · 𝑧 ) ) = ( 1 / 𝑧 ) ) |
| 29 |
27 19 15 28
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( 𝐴 · 1 ) / ( 𝐴 · 𝑧 ) ) = ( 1 / 𝑧 ) ) |
| 30 |
26 29
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( 𝐴 / ( 𝐴 · 𝑧 ) ) = ( 1 / 𝑧 ) ) |
| 31 |
20
|
mulridd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( 𝑧 · 1 ) = 𝑧 ) |
| 32 |
20 16
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( 𝑧 · 𝐴 ) = ( 𝐴 · 𝑧 ) ) |
| 33 |
31 32
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( 𝑧 · 1 ) / ( 𝑧 · 𝐴 ) ) = ( 𝑧 / ( 𝐴 · 𝑧 ) ) ) |
| 34 |
|
divcan5 |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑧 ≠ 0 ) ) → ( ( 𝑧 · 1 ) / ( 𝑧 · 𝐴 ) ) = ( 1 / 𝐴 ) ) |
| 35 |
27 15 19 34
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( 𝑧 · 1 ) / ( 𝑧 · 𝐴 ) ) = ( 1 / 𝐴 ) ) |
| 36 |
33 35
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( 𝑧 / ( 𝐴 · 𝑧 ) ) = ( 1 / 𝐴 ) ) |
| 37 |
30 36
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( 𝐴 / ( 𝐴 · 𝑧 ) ) − ( 𝑧 / ( 𝐴 · 𝑧 ) ) ) = ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) |
| 38 |
24 37
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( 𝐴 − 𝑧 ) / ( 𝐴 · 𝑧 ) ) = ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) |
| 39 |
38
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ ( ( 𝐴 − 𝑧 ) / ( 𝐴 · 𝑧 ) ) ) = ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) ) |
| 40 |
16 20
|
subcld |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( 𝐴 − 𝑧 ) ∈ ℂ ) |
| 41 |
40 21 23
|
absdivd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ ( ( 𝐴 − 𝑧 ) / ( 𝐴 · 𝑧 ) ) ) = ( ( abs ‘ ( 𝐴 − 𝑧 ) ) / ( abs ‘ ( 𝐴 · 𝑧 ) ) ) ) |
| 42 |
39 41
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) = ( ( abs ‘ ( 𝐴 − 𝑧 ) ) / ( abs ‘ ( 𝐴 · 𝑧 ) ) ) ) |
| 43 |
16 20
|
abssubd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ ( 𝐴 − 𝑧 ) ) = ( abs ‘ ( 𝑧 − 𝐴 ) ) ) |
| 44 |
20 16
|
subcld |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( 𝑧 − 𝐴 ) ∈ ℂ ) |
| 45 |
44
|
abscld |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ ( 𝑧 − 𝐴 ) ) ∈ ℝ ) |
| 46 |
43 45
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ ( 𝐴 − 𝑧 ) ) ∈ ℝ ) |
| 47 |
14
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → 𝑇 ∈ ℝ+ ) |
| 48 |
47
|
rpred |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → 𝑇 ∈ ℝ ) |
| 49 |
21
|
abscld |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ ( 𝐴 · 𝑧 ) ) ∈ ℝ ) |
| 50 |
|
rpre |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) |
| 51 |
50
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → 𝐵 ∈ ℝ ) |
| 52 |
49 51
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( abs ‘ ( 𝐴 · 𝑧 ) ) · 𝐵 ) ∈ ℝ ) |
| 53 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) |
| 54 |
43 53
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ ( 𝐴 − 𝑧 ) ) < 𝑇 ) |
| 55 |
9
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( abs ‘ 𝐴 ) · 𝐵 ) ∈ ℝ+ ) |
| 56 |
55
|
rpred |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( abs ‘ 𝐴 ) · 𝐵 ) ∈ ℝ ) |
| 57 |
12
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( abs ‘ 𝐴 ) / 2 ) ∈ ℝ+ ) |
| 58 |
57
|
rpred |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( abs ‘ 𝐴 ) / 2 ) ∈ ℝ ) |
| 59 |
56 58
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( ( abs ‘ 𝐴 ) · 𝐵 ) · ( ( abs ‘ 𝐴 ) / 2 ) ) ∈ ℝ ) |
| 60 |
|
1re |
⊢ 1 ∈ ℝ |
| 61 |
|
min2 |
⊢ ( ( 1 ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) · 𝐵 ) ∈ ℝ ) → if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) ) |
| 62 |
60 56 61
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) ) |
| 63 |
11
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝐵 ) ) ∈ ℝ+ ) |
| 64 |
63
|
rpred |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝐵 ) ) ∈ ℝ ) |
| 65 |
64 56 57
|
lemul1d |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) ↔ ( if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝐵 ) ) · ( ( abs ‘ 𝐴 ) / 2 ) ) ≤ ( ( ( abs ‘ 𝐴 ) · 𝐵 ) · ( ( abs ‘ 𝐴 ) / 2 ) ) ) ) |
| 66 |
62 65
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝐵 ) ) · ( ( abs ‘ 𝐴 ) / 2 ) ) ≤ ( ( ( abs ‘ 𝐴 ) · 𝐵 ) · ( ( abs ‘ 𝐴 ) / 2 ) ) ) |
| 67 |
1 66
|
eqbrtrid |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → 𝑇 ≤ ( ( ( abs ‘ 𝐴 ) · 𝐵 ) · ( ( abs ‘ 𝐴 ) / 2 ) ) ) |
| 68 |
20
|
abscld |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ 𝑧 ) ∈ ℝ ) |
| 69 |
16
|
abscld |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 70 |
69
|
recnd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 71 |
70
|
2halvesd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( ( abs ‘ 𝐴 ) / 2 ) + ( ( abs ‘ 𝐴 ) / 2 ) ) = ( abs ‘ 𝐴 ) ) |
| 72 |
69 68
|
resubcld |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( abs ‘ 𝐴 ) − ( abs ‘ 𝑧 ) ) ∈ ℝ ) |
| 73 |
16 20
|
abs2difd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( abs ‘ 𝐴 ) − ( abs ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐴 − 𝑧 ) ) ) |
| 74 |
|
min1 |
⊢ ( ( 1 ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) · 𝐵 ) ∈ ℝ ) → if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝐵 ) ) ≤ 1 ) |
| 75 |
60 56 74
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝐵 ) ) ≤ 1 ) |
| 76 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → 1 ∈ ℝ ) |
| 77 |
64 76 57
|
lemul1d |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝐵 ) ) ≤ 1 ↔ ( if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝐵 ) ) · ( ( abs ‘ 𝐴 ) / 2 ) ) ≤ ( 1 · ( ( abs ‘ 𝐴 ) / 2 ) ) ) ) |
| 78 |
75 77
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝐵 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝐵 ) ) · ( ( abs ‘ 𝐴 ) / 2 ) ) ≤ ( 1 · ( ( abs ‘ 𝐴 ) / 2 ) ) ) |
| 79 |
1 78
|
eqbrtrid |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → 𝑇 ≤ ( 1 · ( ( abs ‘ 𝐴 ) / 2 ) ) ) |
| 80 |
58
|
recnd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( abs ‘ 𝐴 ) / 2 ) ∈ ℂ ) |
| 81 |
80
|
mullidd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( 1 · ( ( abs ‘ 𝐴 ) / 2 ) ) = ( ( abs ‘ 𝐴 ) / 2 ) ) |
| 82 |
79 81
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → 𝑇 ≤ ( ( abs ‘ 𝐴 ) / 2 ) ) |
| 83 |
46 48 58 54 82
|
ltletrd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ ( 𝐴 − 𝑧 ) ) < ( ( abs ‘ 𝐴 ) / 2 ) ) |
| 84 |
72 46 58 73 83
|
lelttrd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( abs ‘ 𝐴 ) − ( abs ‘ 𝑧 ) ) < ( ( abs ‘ 𝐴 ) / 2 ) ) |
| 85 |
69 68 58
|
ltsubadd2d |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( ( abs ‘ 𝐴 ) − ( abs ‘ 𝑧 ) ) < ( ( abs ‘ 𝐴 ) / 2 ) ↔ ( abs ‘ 𝐴 ) < ( ( abs ‘ 𝑧 ) + ( ( abs ‘ 𝐴 ) / 2 ) ) ) ) |
| 86 |
84 85
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ 𝐴 ) < ( ( abs ‘ 𝑧 ) + ( ( abs ‘ 𝐴 ) / 2 ) ) ) |
| 87 |
71 86
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( ( abs ‘ 𝐴 ) / 2 ) + ( ( abs ‘ 𝐴 ) / 2 ) ) < ( ( abs ‘ 𝑧 ) + ( ( abs ‘ 𝐴 ) / 2 ) ) ) |
| 88 |
58 68 58
|
ltadd1d |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( ( abs ‘ 𝐴 ) / 2 ) < ( abs ‘ 𝑧 ) ↔ ( ( ( abs ‘ 𝐴 ) / 2 ) + ( ( abs ‘ 𝐴 ) / 2 ) ) < ( ( abs ‘ 𝑧 ) + ( ( abs ‘ 𝐴 ) / 2 ) ) ) ) |
| 89 |
87 88
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( abs ‘ 𝐴 ) / 2 ) < ( abs ‘ 𝑧 ) ) |
| 90 |
58 68 55 89
|
ltmul2dd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( ( abs ‘ 𝐴 ) · 𝐵 ) · ( ( abs ‘ 𝐴 ) / 2 ) ) < ( ( ( abs ‘ 𝐴 ) · 𝐵 ) · ( abs ‘ 𝑧 ) ) ) |
| 91 |
16 20
|
absmuld |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ ( 𝐴 · 𝑧 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝑧 ) ) ) |
| 92 |
91
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( abs ‘ ( 𝐴 · 𝑧 ) ) · 𝐵 ) = ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝑧 ) ) · 𝐵 ) ) |
| 93 |
68
|
recnd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ 𝑧 ) ∈ ℂ ) |
| 94 |
51
|
recnd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → 𝐵 ∈ ℂ ) |
| 95 |
70 93 94
|
mul32d |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝑧 ) ) · 𝐵 ) = ( ( ( abs ‘ 𝐴 ) · 𝐵 ) · ( abs ‘ 𝑧 ) ) ) |
| 96 |
92 95
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( abs ‘ ( 𝐴 · 𝑧 ) ) · 𝐵 ) = ( ( ( abs ‘ 𝐴 ) · 𝐵 ) · ( abs ‘ 𝑧 ) ) ) |
| 97 |
90 96
|
breqtrrd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( ( abs ‘ 𝐴 ) · 𝐵 ) · ( ( abs ‘ 𝐴 ) / 2 ) ) < ( ( abs ‘ ( 𝐴 · 𝑧 ) ) · 𝐵 ) ) |
| 98 |
48 59 52 67 97
|
lelttrd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → 𝑇 < ( ( abs ‘ ( 𝐴 · 𝑧 ) ) · 𝐵 ) ) |
| 99 |
46 48 52 54 98
|
lttrd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ ( 𝐴 − 𝑧 ) ) < ( ( abs ‘ ( 𝐴 · 𝑧 ) ) · 𝐵 ) ) |
| 100 |
21 23
|
absrpcld |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ ( 𝐴 · 𝑧 ) ) ∈ ℝ+ ) |
| 101 |
46 51 100
|
ltdivmuld |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( ( abs ‘ ( 𝐴 − 𝑧 ) ) / ( abs ‘ ( 𝐴 · 𝑧 ) ) ) < 𝐵 ↔ ( abs ‘ ( 𝐴 − 𝑧 ) ) < ( ( abs ‘ ( 𝐴 · 𝑧 ) ) · 𝐵 ) ) ) |
| 102 |
99 101
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( ( abs ‘ ( 𝐴 − 𝑧 ) ) / ( abs ‘ ( 𝐴 · 𝑧 ) ) ) < 𝐵 ) |
| 103 |
42 102
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝐵 ) |
| 104 |
103
|
expr |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝐵 ) ) |
| 105 |
104
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) → ∀ 𝑧 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝐵 ) ) |
| 106 |
|
breq2 |
⊢ ( 𝑦 = 𝑇 → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ↔ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 ) ) |
| 107 |
106
|
rspceaimv |
⊢ ( ( 𝑇 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑇 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝐵 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝐵 ) ) |
| 108 |
14 105 107
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝐵 ) ) |