Step |
Hyp |
Ref |
Expression |
1 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
2 |
1
|
oveq1i |
⊢ ( ( 1 / 1 ) / ( 𝐴 / 𝐵 ) ) = ( 1 / ( 𝐴 / 𝐵 ) ) |
3 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
4 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
5 |
3 4
|
pm3.2i |
⊢ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) |
6 |
|
divdivdiv |
⊢ ( ( ( 1 ∈ ℂ ∧ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) ) ∧ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) ) → ( ( 1 / 1 ) / ( 𝐴 / 𝐵 ) ) = ( ( 1 · 𝐵 ) / ( 1 · 𝐴 ) ) ) |
7 |
3 5 6
|
mpanl12 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 1 ) / ( 𝐴 / 𝐵 ) ) = ( ( 1 · 𝐵 ) / ( 1 · 𝐴 ) ) ) |
8 |
2 7
|
eqtr3id |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 1 / ( 𝐴 / 𝐵 ) ) = ( ( 1 · 𝐵 ) / ( 1 · 𝐴 ) ) ) |
9 |
|
mulid2 |
⊢ ( 𝐵 ∈ ℂ → ( 1 · 𝐵 ) = 𝐵 ) |
10 |
|
mulid2 |
⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) |
11 |
9 10
|
oveqan12rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 · 𝐵 ) / ( 1 · 𝐴 ) ) = ( 𝐵 / 𝐴 ) ) |
12 |
11
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 · 𝐵 ) / ( 1 · 𝐴 ) ) = ( 𝐵 / 𝐴 ) ) |
13 |
8 12
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 1 / ( 𝐴 / 𝐵 ) ) = ( 𝐵 / 𝐴 ) ) |