Metamath Proof Explorer


Theorem recdiv2

Description: Division into a reciprocal. (Contributed by NM, 19-Oct-2007)

Ref Expression
Assertion recdiv2 ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 𝐴 ) / 𝐵 ) = ( 1 / ( 𝐴 · 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ax-1cn 1 ∈ ℂ
2 divdiv1 ( ( 1 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 𝐴 ) / 𝐵 ) = ( 1 / ( 𝐴 · 𝐵 ) ) )
3 1 2 mp3an1 ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 𝐴 ) / 𝐵 ) = ( 1 / ( 𝐴 · 𝐵 ) ) )