Step |
Hyp |
Ref |
Expression |
1 |
|
recex |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ∃ 𝑦 ∈ ℂ ( 𝐵 · 𝑦 ) = 1 ) |
2 |
1
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ∃ 𝑦 ∈ ℂ ( 𝐵 · 𝑦 ) = 1 ) |
3 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → 𝑦 ∈ ℂ ) |
4 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → 𝐴 ∈ ℂ ) |
5 |
3 4
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ( 𝑦 · 𝐴 ) ∈ ℂ ) |
6 |
|
oveq1 |
⊢ ( ( 𝐵 · 𝑦 ) = 1 → ( ( 𝐵 · 𝑦 ) · 𝐴 ) = ( 1 · 𝐴 ) ) |
7 |
6
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ( ( 𝐵 · 𝑦 ) · 𝐴 ) = ( 1 · 𝐴 ) ) |
8 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → 𝐵 ∈ ℂ ) |
9 |
8 3 4
|
mulassd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ( ( 𝐵 · 𝑦 ) · 𝐴 ) = ( 𝐵 · ( 𝑦 · 𝐴 ) ) ) |
10 |
4
|
mulid2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ( 1 · 𝐴 ) = 𝐴 ) |
11 |
7 9 10
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ( 𝐵 · ( 𝑦 · 𝐴 ) ) = 𝐴 ) |
12 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 · 𝐴 ) → ( 𝐵 · 𝑥 ) = ( 𝐵 · ( 𝑦 · 𝐴 ) ) ) |
13 |
12
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑦 · 𝐴 ) → ( ( 𝐵 · 𝑥 ) = 𝐴 ↔ ( 𝐵 · ( 𝑦 · 𝐴 ) ) = 𝐴 ) ) |
14 |
13
|
rspcev |
⊢ ( ( ( 𝑦 · 𝐴 ) ∈ ℂ ∧ ( 𝐵 · ( 𝑦 · 𝐴 ) ) = 𝐴 ) → ∃ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) |
15 |
5 11 14
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ∃ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) |
16 |
15
|
rexlimdvaa |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∃ 𝑦 ∈ ℂ ( 𝐵 · 𝑦 ) = 1 → ∃ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑦 ∈ ℂ ( 𝐵 · 𝑦 ) = 1 → ∃ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
18 |
2 17
|
mpd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ∃ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) |
19 |
|
eqtr3 |
⊢ ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑦 ) ) |
20 |
|
mulcan |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
21 |
19 20
|
syl5ib |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → 𝑥 = 𝑦 ) ) |
22 |
21
|
3expa |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → 𝑥 = 𝑦 ) ) |
23 |
22
|
expcom |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
24 |
23
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
25 |
24
|
ralrimivv |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → 𝑥 = 𝑦 ) ) |
26 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑦 ) ) |
27 |
26
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 · 𝑥 ) = 𝐴 ↔ ( 𝐵 · 𝑦 ) = 𝐴 ) ) |
28 |
27
|
reu4 |
⊢ ( ∃! 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ↔ ( ∃ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
29 |
18 25 28
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ∃! 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) |