Step |
Hyp |
Ref |
Expression |
1 |
|
ltrelsr |
⊢ <R ⊆ ( R × R ) |
2 |
1
|
brel |
⊢ ( 0R <R 𝐴 → ( 0R ∈ R ∧ 𝐴 ∈ R ) ) |
3 |
2
|
simprd |
⊢ ( 0R <R 𝐴 → 𝐴 ∈ R ) |
4 |
|
df-nr |
⊢ R = ( ( P × P ) / ~R ) |
5 |
|
breq2 |
⊢ ( [ 〈 𝑦 , 𝑧 〉 ] ~R = 𝐴 → ( 0R <R [ 〈 𝑦 , 𝑧 〉 ] ~R ↔ 0R <R 𝐴 ) ) |
6 |
|
oveq1 |
⊢ ( [ 〈 𝑦 , 𝑧 〉 ] ~R = 𝐴 → ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = ( 𝐴 ·R 𝑥 ) ) |
7 |
6
|
eqeq1d |
⊢ ( [ 〈 𝑦 , 𝑧 〉 ] ~R = 𝐴 → ( ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ↔ ( 𝐴 ·R 𝑥 ) = 1R ) ) |
8 |
7
|
rexbidv |
⊢ ( [ 〈 𝑦 , 𝑧 〉 ] ~R = 𝐴 → ( ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ↔ ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) ) |
9 |
5 8
|
imbi12d |
⊢ ( [ 〈 𝑦 , 𝑧 〉 ] ~R = 𝐴 → ( ( 0R <R [ 〈 𝑦 , 𝑧 〉 ] ~R → ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ) ↔ ( 0R <R 𝐴 → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) ) ) |
10 |
|
gt0srpr |
⊢ ( 0R <R [ 〈 𝑦 , 𝑧 〉 ] ~R ↔ 𝑧 <P 𝑦 ) |
11 |
|
ltexpri |
⊢ ( 𝑧 <P 𝑦 → ∃ 𝑤 ∈ P ( 𝑧 +P 𝑤 ) = 𝑦 ) |
12 |
10 11
|
sylbi |
⊢ ( 0R <R [ 〈 𝑦 , 𝑧 〉 ] ~R → ∃ 𝑤 ∈ P ( 𝑧 +P 𝑤 ) = 𝑦 ) |
13 |
|
recexpr |
⊢ ( 𝑤 ∈ P → ∃ 𝑣 ∈ P ( 𝑤 ·P 𝑣 ) = 1P ) |
14 |
|
1pr |
⊢ 1P ∈ P |
15 |
|
addclpr |
⊢ ( ( 𝑣 ∈ P ∧ 1P ∈ P ) → ( 𝑣 +P 1P ) ∈ P ) |
16 |
14 15
|
mpan2 |
⊢ ( 𝑣 ∈ P → ( 𝑣 +P 1P ) ∈ P ) |
17 |
|
enrex |
⊢ ~R ∈ V |
18 |
17 4
|
ecopqsi |
⊢ ( ( ( 𝑣 +P 1P ) ∈ P ∧ 1P ∈ P ) → [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ∈ R ) |
19 |
16 14 18
|
sylancl |
⊢ ( 𝑣 ∈ P → [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ∈ R ) |
20 |
19
|
ad2antlr |
⊢ ( ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ∈ R ) |
21 |
16 14
|
jctir |
⊢ ( 𝑣 ∈ P → ( ( 𝑣 +P 1P ) ∈ P ∧ 1P ∈ P ) ) |
22 |
21
|
anim2i |
⊢ ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) → ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ ( ( 𝑣 +P 1P ) ∈ P ∧ 1P ∈ P ) ) ) |
23 |
22
|
adantr |
⊢ ( ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ ( ( 𝑣 +P 1P ) ∈ P ∧ 1P ∈ P ) ) ) |
24 |
|
mulsrpr |
⊢ ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ ( ( 𝑣 +P 1P ) ∈ P ∧ 1P ∈ P ) ) → ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ) = [ 〈 ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) 〉 ] ~R ) |
25 |
23 24
|
syl |
⊢ ( ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ) = [ 〈 ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) 〉 ] ~R ) |
26 |
|
oveq1 |
⊢ ( ( 𝑧 +P 𝑤 ) = 𝑦 → ( ( 𝑧 +P 𝑤 ) ·P 𝑣 ) = ( 𝑦 ·P 𝑣 ) ) |
27 |
26
|
eqcomd |
⊢ ( ( 𝑧 +P 𝑤 ) = 𝑦 → ( 𝑦 ·P 𝑣 ) = ( ( 𝑧 +P 𝑤 ) ·P 𝑣 ) ) |
28 |
|
vex |
⊢ 𝑧 ∈ V |
29 |
|
vex |
⊢ 𝑤 ∈ V |
30 |
|
vex |
⊢ 𝑣 ∈ V |
31 |
|
mulcompr |
⊢ ( 𝑢 ·P 𝑓 ) = ( 𝑓 ·P 𝑢 ) |
32 |
|
distrpr |
⊢ ( 𝑢 ·P ( 𝑓 +P 𝑥 ) ) = ( ( 𝑢 ·P 𝑓 ) +P ( 𝑢 ·P 𝑥 ) ) |
33 |
28 29 30 31 32
|
caovdir |
⊢ ( ( 𝑧 +P 𝑤 ) ·P 𝑣 ) = ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑣 ) ) |
34 |
|
oveq2 |
⊢ ( ( 𝑤 ·P 𝑣 ) = 1P → ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑣 ) ) = ( ( 𝑧 ·P 𝑣 ) +P 1P ) ) |
35 |
33 34
|
eqtrid |
⊢ ( ( 𝑤 ·P 𝑣 ) = 1P → ( ( 𝑧 +P 𝑤 ) ·P 𝑣 ) = ( ( 𝑧 ·P 𝑣 ) +P 1P ) ) |
36 |
27 35
|
sylan9eqr |
⊢ ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( 𝑦 ·P 𝑣 ) = ( ( 𝑧 ·P 𝑣 ) +P 1P ) ) |
37 |
36
|
oveq1d |
⊢ ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) = ( ( ( 𝑧 ·P 𝑣 ) +P 1P ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) ) |
38 |
|
ovex |
⊢ ( 𝑧 ·P 𝑣 ) ∈ V |
39 |
14
|
elexi |
⊢ 1P ∈ V |
40 |
|
ovex |
⊢ ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ∈ V |
41 |
|
addcompr |
⊢ ( 𝑢 +P 𝑓 ) = ( 𝑓 +P 𝑢 ) |
42 |
|
addasspr |
⊢ ( ( 𝑢 +P 𝑓 ) +P 𝑥 ) = ( 𝑢 +P ( 𝑓 +P 𝑥 ) ) |
43 |
38 39 40 41 42
|
caov32 |
⊢ ( ( ( 𝑧 ·P 𝑣 ) +P 1P ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) = ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) |
44 |
37 43
|
eqtrdi |
⊢ ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) = ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) ) |
45 |
44
|
oveq1d |
⊢ ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) = ( ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) +P 1P ) ) |
46 |
|
addasspr |
⊢ ( ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) +P 1P ) = ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P ( 1P +P 1P ) ) |
47 |
45 46
|
eqtrdi |
⊢ ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) = ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P ( 1P +P 1P ) ) ) |
48 |
|
distrpr |
⊢ ( 𝑦 ·P ( 𝑣 +P 1P ) ) = ( ( 𝑦 ·P 𝑣 ) +P ( 𝑦 ·P 1P ) ) |
49 |
48
|
oveq1i |
⊢ ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) = ( ( ( 𝑦 ·P 𝑣 ) +P ( 𝑦 ·P 1P ) ) +P ( 𝑧 ·P 1P ) ) |
50 |
|
addasspr |
⊢ ( ( ( 𝑦 ·P 𝑣 ) +P ( 𝑦 ·P 1P ) ) +P ( 𝑧 ·P 1P ) ) = ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) |
51 |
49 50
|
eqtri |
⊢ ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) = ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) |
52 |
51
|
oveq1i |
⊢ ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) +P 1P ) = ( ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) |
53 |
|
distrpr |
⊢ ( 𝑧 ·P ( 𝑣 +P 1P ) ) = ( ( 𝑧 ·P 𝑣 ) +P ( 𝑧 ·P 1P ) ) |
54 |
53
|
oveq2i |
⊢ ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) = ( ( 𝑦 ·P 1P ) +P ( ( 𝑧 ·P 𝑣 ) +P ( 𝑧 ·P 1P ) ) ) |
55 |
|
ovex |
⊢ ( 𝑦 ·P 1P ) ∈ V |
56 |
|
ovex |
⊢ ( 𝑧 ·P 1P ) ∈ V |
57 |
55 38 56 41 42
|
caov12 |
⊢ ( ( 𝑦 ·P 1P ) +P ( ( 𝑧 ·P 𝑣 ) +P ( 𝑧 ·P 1P ) ) ) = ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) |
58 |
54 57
|
eqtri |
⊢ ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) = ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) |
59 |
58
|
oveq1i |
⊢ ( ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) +P ( 1P +P 1P ) ) = ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P ( 1P +P 1P ) ) |
60 |
47 52 59
|
3eqtr4g |
⊢ ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) +P 1P ) = ( ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) +P ( 1P +P 1P ) ) ) |
61 |
|
mulclpr |
⊢ ( ( 𝑦 ∈ P ∧ ( 𝑣 +P 1P ) ∈ P ) → ( 𝑦 ·P ( 𝑣 +P 1P ) ) ∈ P ) |
62 |
16 61
|
sylan2 |
⊢ ( ( 𝑦 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑦 ·P ( 𝑣 +P 1P ) ) ∈ P ) |
63 |
|
mulclpr |
⊢ ( ( 𝑧 ∈ P ∧ 1P ∈ P ) → ( 𝑧 ·P 1P ) ∈ P ) |
64 |
14 63
|
mpan2 |
⊢ ( 𝑧 ∈ P → ( 𝑧 ·P 1P ) ∈ P ) |
65 |
|
addclpr |
⊢ ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) ∈ P ∧ ( 𝑧 ·P 1P ) ∈ P ) → ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) ∈ P ) |
66 |
62 64 65
|
syl2an |
⊢ ( ( ( 𝑦 ∈ P ∧ 𝑣 ∈ P ) ∧ 𝑧 ∈ P ) → ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) ∈ P ) |
67 |
66
|
an32s |
⊢ ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) → ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) ∈ P ) |
68 |
|
mulclpr |
⊢ ( ( 𝑦 ∈ P ∧ 1P ∈ P ) → ( 𝑦 ·P 1P ) ∈ P ) |
69 |
14 68
|
mpan2 |
⊢ ( 𝑦 ∈ P → ( 𝑦 ·P 1P ) ∈ P ) |
70 |
|
mulclpr |
⊢ ( ( 𝑧 ∈ P ∧ ( 𝑣 +P 1P ) ∈ P ) → ( 𝑧 ·P ( 𝑣 +P 1P ) ) ∈ P ) |
71 |
16 70
|
sylan2 |
⊢ ( ( 𝑧 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑧 ·P ( 𝑣 +P 1P ) ) ∈ P ) |
72 |
|
addclpr |
⊢ ( ( ( 𝑦 ·P 1P ) ∈ P ∧ ( 𝑧 ·P ( 𝑣 +P 1P ) ) ∈ P ) → ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ∈ P ) |
73 |
69 71 72
|
syl2an |
⊢ ( ( 𝑦 ∈ P ∧ ( 𝑧 ∈ P ∧ 𝑣 ∈ P ) ) → ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ∈ P ) |
74 |
73
|
anassrs |
⊢ ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) → ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ∈ P ) |
75 |
67 74
|
jca |
⊢ ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) → ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) ∈ P ∧ ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ∈ P ) ) |
76 |
|
addclpr |
⊢ ( ( 1P ∈ P ∧ 1P ∈ P ) → ( 1P +P 1P ) ∈ P ) |
77 |
14 14 76
|
mp2an |
⊢ ( 1P +P 1P ) ∈ P |
78 |
77 14
|
pm3.2i |
⊢ ( ( 1P +P 1P ) ∈ P ∧ 1P ∈ P ) |
79 |
|
enreceq |
⊢ ( ( ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) ∈ P ∧ ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ∈ P ) ∧ ( ( 1P +P 1P ) ∈ P ∧ 1P ∈ P ) ) → ( [ 〈 ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) 〉 ] ~R = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ↔ ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) +P 1P ) = ( ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) +P ( 1P +P 1P ) ) ) ) |
80 |
75 78 79
|
sylancl |
⊢ ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) → ( [ 〈 ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) 〉 ] ~R = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ↔ ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) +P 1P ) = ( ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) +P ( 1P +P 1P ) ) ) ) |
81 |
60 80
|
syl5ibr |
⊢ ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) → ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → [ 〈 ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) 〉 ] ~R = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ) ) |
82 |
81
|
imp |
⊢ ( ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → [ 〈 ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) 〉 ] ~R = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ) |
83 |
25 82
|
eqtrd |
⊢ ( ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ) = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ) |
84 |
|
df-1r |
⊢ 1R = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R |
85 |
83 84
|
eqtr4di |
⊢ ( ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ) = 1R ) |
86 |
|
oveq2 |
⊢ ( 𝑥 = [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R → ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ) ) |
87 |
86
|
eqeq1d |
⊢ ( 𝑥 = [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R → ( ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ↔ ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ) = 1R ) ) |
88 |
87
|
rspcev |
⊢ ( ( [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ∈ R ∧ ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R [ 〈 ( 𝑣 +P 1P ) , 1P 〉 ] ~R ) = 1R ) → ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ) |
89 |
20 85 88
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ∧ 𝑣 ∈ P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ) |
90 |
89
|
exp43 |
⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑣 ∈ P → ( ( 𝑤 ·P 𝑣 ) = 1P → ( ( 𝑧 +P 𝑤 ) = 𝑦 → ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ) ) ) ) |
91 |
90
|
rexlimdv |
⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( ∃ 𝑣 ∈ P ( 𝑤 ·P 𝑣 ) = 1P → ( ( 𝑧 +P 𝑤 ) = 𝑦 → ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ) ) ) |
92 |
13 91
|
syl5 |
⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑤 ∈ P → ( ( 𝑧 +P 𝑤 ) = 𝑦 → ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ) ) ) |
93 |
92
|
rexlimdv |
⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( ∃ 𝑤 ∈ P ( 𝑧 +P 𝑤 ) = 𝑦 → ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ) ) |
94 |
12 93
|
syl5 |
⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 0R <R [ 〈 𝑦 , 𝑧 〉 ] ~R → ∃ 𝑥 ∈ R ( [ 〈 𝑦 , 𝑧 〉 ] ~R ·R 𝑥 ) = 1R ) ) |
95 |
4 9 94
|
ecoptocl |
⊢ ( 𝐴 ∈ R → ( 0R <R 𝐴 → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) ) |
96 |
3 95
|
mpcom |
⊢ ( 0R <R 𝐴 → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) |