Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) |
2 |
1
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ ) |
3 |
|
gt0ne0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
4 |
2 3
|
recne0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ≠ 0 ) |
5 |
4
|
necomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≠ ( 1 / 𝐴 ) ) |
6 |
5
|
neneqd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ¬ 0 = ( 1 / 𝐴 ) ) |
7 |
|
0lt1 |
⊢ 0 < 1 |
8 |
|
0re |
⊢ 0 ∈ ℝ |
9 |
|
1re |
⊢ 1 ∈ ℝ |
10 |
8 9
|
ltnsymi |
⊢ ( 0 < 1 → ¬ 1 < 0 ) |
11 |
7 10
|
ax-mp |
⊢ ¬ 1 < 0 |
12 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 𝐴 ∈ ℝ ) |
13 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 𝐴 ≠ 0 ) |
14 |
12 13
|
rereccld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
15 |
14
|
renegcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → - ( 1 / 𝐴 ) ∈ ℝ ) |
16 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( 1 / 𝐴 ) < 0 ) |
17 |
1 3
|
rereccld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
19 |
18
|
lt0neg1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( ( 1 / 𝐴 ) < 0 ↔ 0 < - ( 1 / 𝐴 ) ) ) |
20 |
16 19
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 0 < - ( 1 / 𝐴 ) ) |
21 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 0 < 𝐴 ) |
22 |
15 12 20 21
|
mulgt0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 0 < ( - ( 1 / 𝐴 ) · 𝐴 ) ) |
23 |
2
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 𝐴 ∈ ℂ ) |
24 |
23 13
|
reccld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
25 |
24 23
|
mulneg1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( - ( 1 / 𝐴 ) · 𝐴 ) = - ( ( 1 / 𝐴 ) · 𝐴 ) ) |
26 |
23 13
|
recid2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) |
27 |
26
|
negeqd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → - ( ( 1 / 𝐴 ) · 𝐴 ) = - 1 ) |
28 |
25 27
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( - ( 1 / 𝐴 ) · 𝐴 ) = - 1 ) |
29 |
22 28
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 0 < - 1 ) |
30 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 1 ∈ ℝ ) |
31 |
30
|
lt0neg1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( 1 < 0 ↔ 0 < - 1 ) ) |
32 |
29 31
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 1 < 0 ) |
33 |
32
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) < 0 → 1 < 0 ) ) |
34 |
11 33
|
mtoi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ¬ ( 1 / 𝐴 ) < 0 ) |
35 |
|
ioran |
⊢ ( ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) ↔ ( ¬ 0 = ( 1 / 𝐴 ) ∧ ¬ ( 1 / 𝐴 ) < 0 ) ) |
36 |
6 34 35
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) ) |
37 |
|
axlttri |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( 0 < ( 1 / 𝐴 ) ↔ ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) ) ) |
38 |
8 17 37
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 < ( 1 / 𝐴 ) ↔ ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) ) ) |
39 |
36 38
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) |