Metamath Proof Explorer


Theorem recgt0

Description: The reciprocal of a positive number is positive. Exercise 4 of Apostol p. 21. (Contributed by NM, 25-Aug-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion recgt0 ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ )
2 1 recnd ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ )
3 gt0ne0 ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 )
4 2 3 recne0d ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ≠ 0 )
5 4 necomd ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≠ ( 1 / 𝐴 ) )
6 5 neneqd ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ¬ 0 = ( 1 / 𝐴 ) )
7 0lt1 0 < 1
8 0re 0 ∈ ℝ
9 1re 1 ∈ ℝ
10 8 9 ltnsymi ( 0 < 1 → ¬ 1 < 0 )
11 7 10 ax-mp ¬ 1 < 0
12 simpll ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 𝐴 ∈ ℝ )
13 3 adantr ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 𝐴 ≠ 0 )
14 12 13 rereccld ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( 1 / 𝐴 ) ∈ ℝ )
15 14 renegcld ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → - ( 1 / 𝐴 ) ∈ ℝ )
16 simpr ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( 1 / 𝐴 ) < 0 )
17 1 3 rereccld ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ )
18 17 adantr ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( 1 / 𝐴 ) ∈ ℝ )
19 18 lt0neg1d ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( ( 1 / 𝐴 ) < 0 ↔ 0 < - ( 1 / 𝐴 ) ) )
20 16 19 mpbid ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 0 < - ( 1 / 𝐴 ) )
21 simplr ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 0 < 𝐴 )
22 15 12 20 21 mulgt0d ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 0 < ( - ( 1 / 𝐴 ) · 𝐴 ) )
23 2 adantr ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 𝐴 ∈ ℂ )
24 23 13 reccld ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( 1 / 𝐴 ) ∈ ℂ )
25 24 23 mulneg1d ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( - ( 1 / 𝐴 ) · 𝐴 ) = - ( ( 1 / 𝐴 ) · 𝐴 ) )
26 23 13 recid2d ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 )
27 26 negeqd ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → - ( ( 1 / 𝐴 ) · 𝐴 ) = - 1 )
28 25 27 eqtrd ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( - ( 1 / 𝐴 ) · 𝐴 ) = - 1 )
29 22 28 breqtrd ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 0 < - 1 )
30 1red ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 1 ∈ ℝ )
31 30 lt0neg1d ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → ( 1 < 0 ↔ 0 < - 1 ) )
32 29 31 mpbird ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 / 𝐴 ) < 0 ) → 1 < 0 )
33 32 ex ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) < 0 → 1 < 0 ) )
34 11 33 mtoi ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ¬ ( 1 / 𝐴 ) < 0 )
35 ioran ( ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) ↔ ( ¬ 0 = ( 1 / 𝐴 ) ∧ ¬ ( 1 / 𝐴 ) < 0 ) )
36 6 34 35 sylanbrc ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) )
37 axlttri ( ( 0 ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( 0 < ( 1 / 𝐴 ) ↔ ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) ) )
38 8 17 37 sylancr ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 < ( 1 / 𝐴 ) ↔ ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) ) )
39 36 38 mpbird ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) )