Metamath Proof Explorer
Description: The reciprocal of a positive number is positive. Exercise 4 of
Apostol p. 21. (Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
ltp1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
recgt0d.2 |
⊢ ( 𝜑 → 0 < 𝐴 ) |
|
Assertion |
recgt0d |
⊢ ( 𝜑 → 0 < ( 1 / 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltp1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
recgt0d.2 |
⊢ ( 𝜑 → 0 < 𝐴 ) |
3 |
|
recgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → 0 < ( 1 / 𝐴 ) ) |