| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltplus1.1 | ⊢ 𝐴  ∈  ℝ | 
						
							| 2 |  | recgt0i.2 | ⊢ 0  <  𝐴 | 
						
							| 3 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 4 | 1 | recni | ⊢ 𝐴  ∈  ℂ | 
						
							| 5 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 6 | 1 2 | gt0ne0ii | ⊢ 𝐴  ≠  0 | 
						
							| 7 | 3 4 5 6 | divne0i | ⊢ ( 1  /  𝐴 )  ≠  0 | 
						
							| 8 | 7 | nesymi | ⊢ ¬  0  =  ( 1  /  𝐴 ) | 
						
							| 9 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 10 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 11 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 12 | 10 11 | ltnsymi | ⊢ ( 0  <  1  →  ¬  1  <  0 ) | 
						
							| 13 | 9 12 | ax-mp | ⊢ ¬  1  <  0 | 
						
							| 14 | 1 6 | rereccli | ⊢ ( 1  /  𝐴 )  ∈  ℝ | 
						
							| 15 | 14 | renegcli | ⊢ - ( 1  /  𝐴 )  ∈  ℝ | 
						
							| 16 | 15 1 | mulgt0i | ⊢ ( ( 0  <  - ( 1  /  𝐴 )  ∧  0  <  𝐴 )  →  0  <  ( - ( 1  /  𝐴 )  ·  𝐴 ) ) | 
						
							| 17 | 2 16 | mpan2 | ⊢ ( 0  <  - ( 1  /  𝐴 )  →  0  <  ( - ( 1  /  𝐴 )  ·  𝐴 ) ) | 
						
							| 18 | 14 | recni | ⊢ ( 1  /  𝐴 )  ∈  ℂ | 
						
							| 19 | 18 4 | mulneg1i | ⊢ ( - ( 1  /  𝐴 )  ·  𝐴 )  =  - ( ( 1  /  𝐴 )  ·  𝐴 ) | 
						
							| 20 | 4 6 | recidi | ⊢ ( 𝐴  ·  ( 1  /  𝐴 ) )  =  1 | 
						
							| 21 | 4 18 20 | mulcomli | ⊢ ( ( 1  /  𝐴 )  ·  𝐴 )  =  1 | 
						
							| 22 | 21 | negeqi | ⊢ - ( ( 1  /  𝐴 )  ·  𝐴 )  =  - 1 | 
						
							| 23 | 19 22 | eqtri | ⊢ ( - ( 1  /  𝐴 )  ·  𝐴 )  =  - 1 | 
						
							| 24 | 17 23 | breqtrdi | ⊢ ( 0  <  - ( 1  /  𝐴 )  →  0  <  - 1 ) | 
						
							| 25 |  | lt0neg1 | ⊢ ( ( 1  /  𝐴 )  ∈  ℝ  →  ( ( 1  /  𝐴 )  <  0  ↔  0  <  - ( 1  /  𝐴 ) ) ) | 
						
							| 26 | 14 25 | ax-mp | ⊢ ( ( 1  /  𝐴 )  <  0  ↔  0  <  - ( 1  /  𝐴 ) ) | 
						
							| 27 |  | lt0neg1 | ⊢ ( 1  ∈  ℝ  →  ( 1  <  0  ↔  0  <  - 1 ) ) | 
						
							| 28 | 11 27 | ax-mp | ⊢ ( 1  <  0  ↔  0  <  - 1 ) | 
						
							| 29 | 24 26 28 | 3imtr4i | ⊢ ( ( 1  /  𝐴 )  <  0  →  1  <  0 ) | 
						
							| 30 | 13 29 | mto | ⊢ ¬  ( 1  /  𝐴 )  <  0 | 
						
							| 31 | 8 30 | pm3.2ni | ⊢ ¬  ( 0  =  ( 1  /  𝐴 )  ∨  ( 1  /  𝐴 )  <  0 ) | 
						
							| 32 |  | axlttri | ⊢ ( ( 0  ∈  ℝ  ∧  ( 1  /  𝐴 )  ∈  ℝ )  →  ( 0  <  ( 1  /  𝐴 )  ↔  ¬  ( 0  =  ( 1  /  𝐴 )  ∨  ( 1  /  𝐴 )  <  0 ) ) ) | 
						
							| 33 | 10 14 32 | mp2an | ⊢ ( 0  <  ( 1  /  𝐴 )  ↔  ¬  ( 0  =  ( 1  /  𝐴 )  ∨  ( 1  /  𝐴 )  <  0 ) ) | 
						
							| 34 | 31 33 | mpbir | ⊢ 0  <  ( 1  /  𝐴 ) |