Metamath Proof Explorer


Theorem recgt1d

Description: The reciprocal of a positive number greater than 1 is less than 1. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
Assertion recgt1d ( 𝜑 → ( 1 < 𝐴 ↔ ( 1 / 𝐴 ) < 1 ) )

Proof

Step Hyp Ref Expression
1 rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
2 1 rpregt0d ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )
3 recgt1 ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐴 ↔ ( 1 / 𝐴 ) < 1 ) )
4 2 3 syl ( 𝜑 → ( 1 < 𝐴 ↔ ( 1 / 𝐴 ) < 1 ) )