| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0lt1 |
⊢ 0 < 1 |
| 2 |
|
0re |
⊢ 0 ∈ ℝ |
| 3 |
|
1re |
⊢ 1 ∈ ℝ |
| 4 |
|
lttr |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < 𝐴 ) → 0 < 𝐴 ) ) |
| 5 |
2 3 4
|
mp3an12 |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 1 ∧ 1 < 𝐴 ) → 0 < 𝐴 ) ) |
| 6 |
1 5
|
mpani |
⊢ ( 𝐴 ∈ ℝ → ( 1 < 𝐴 → 0 < 𝐴 ) ) |
| 7 |
6
|
imdistani |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 8 |
|
recgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) |
| 10 |
|
recgt1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐴 ↔ ( 1 / 𝐴 ) < 1 ) ) |
| 11 |
10
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 1 < 𝐴 ) → ( 1 / 𝐴 ) < 1 ) |
| 12 |
7 11
|
sylancom |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 1 / 𝐴 ) < 1 ) |
| 13 |
9 12
|
jca |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 0 < ( 1 / 𝐴 ) ∧ ( 1 / 𝐴 ) < 1 ) ) |