Metamath Proof Explorer


Theorem recidi

Description: Multiplication of a number and its reciprocal. (Contributed by NM, 9-Feb-1995)

Ref Expression
Hypotheses divclz.1 𝐴 ∈ ℂ
reccl.2 𝐴 ≠ 0
Assertion recidi ( 𝐴 · ( 1 / 𝐴 ) ) = 1

Proof

Step Hyp Ref Expression
1 divclz.1 𝐴 ∈ ℂ
2 reccl.2 𝐴 ≠ 0
3 1 recidzi ( 𝐴 ≠ 0 → ( 𝐴 · ( 1 / 𝐴 ) ) = 1 )
4 2 3 ax-mp ( 𝐴 · ( 1 / 𝐴 ) ) = 1