Metamath Proof Explorer


Theorem recl

Description: The real part of a complex number is real. (Contributed by NM, 9-May-1999) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion recl ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 reval ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) )
2 cjth ( 𝐴 ∈ ℂ → ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ∈ ℝ ∧ ( i · ( 𝐴 − ( ∗ ‘ 𝐴 ) ) ) ∈ ℝ ) )
3 2 simpld ( 𝐴 ∈ ℂ → ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ∈ ℝ )
4 3 rehalfcld ( 𝐴 ∈ ℂ → ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) ∈ ℝ )
5 1 4 eqeltrd ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ )