Step |
Hyp |
Ref |
Expression |
1 |
|
recld2.1 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
|
difss |
⊢ ( ℂ ∖ ℝ ) ⊆ ℂ |
3 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → 𝑥 ∈ ℂ ) |
4 |
3
|
imcld |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( ℑ ‘ 𝑥 ) ∈ ℝ ) |
5 |
4
|
recnd |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( ℑ ‘ 𝑥 ) ∈ ℂ ) |
6 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ¬ 𝑥 ∈ ℝ ) |
7 |
|
reim0b |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) = 0 ) ) |
8 |
3 7
|
syl |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) = 0 ) ) |
9 |
8
|
necon3bbid |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( ¬ 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) ≠ 0 ) ) |
10 |
6 9
|
mpbid |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( ℑ ‘ 𝑥 ) ≠ 0 ) |
11 |
5 10
|
absrpcld |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( abs ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℝ+ ) |
12 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
13 |
5
|
abscld |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( abs ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℝ ) |
14 |
13
|
rexrd |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( abs ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℝ* ) |
15 |
|
elbl |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝑥 ∈ ℂ ∧ ( abs ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℝ* ) → ( 𝑦 ∈ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) |
16 |
12 3 14 15
|
mp3an2i |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( 𝑦 ∈ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) |
17 |
|
simprl |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ) → 𝑦 ∈ ℂ ) |
18 |
3
|
adantr |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
19 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
20 |
19
|
recnd |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
21 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
22 |
21
|
cnmetdval |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
23 |
18 20 22
|
syl2anc |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
24 |
5
|
adantr |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ 𝑥 ) ∈ ℂ ) |
25 |
24
|
abscld |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℝ ) |
26 |
18 20
|
subcld |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑥 − 𝑦 ) ∈ ℂ ) |
27 |
26
|
abscld |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) ∈ ℝ ) |
28 |
18 20
|
imsubd |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ ( 𝑥 − 𝑦 ) ) = ( ( ℑ ‘ 𝑥 ) − ( ℑ ‘ 𝑦 ) ) ) |
29 |
|
reim0 |
⊢ ( 𝑦 ∈ ℝ → ( ℑ ‘ 𝑦 ) = 0 ) |
30 |
29
|
adantl |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ 𝑦 ) = 0 ) |
31 |
30
|
oveq2d |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) − ( ℑ ‘ 𝑦 ) ) = ( ( ℑ ‘ 𝑥 ) − 0 ) ) |
32 |
24
|
subid1d |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) − 0 ) = ( ℑ ‘ 𝑥 ) ) |
33 |
28 31 32
|
3eqtrd |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ ( 𝑥 − 𝑦 ) ) = ( ℑ ‘ 𝑥 ) ) |
34 |
33
|
fveq2d |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ ( 𝑥 − 𝑦 ) ) ) = ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) |
35 |
|
absimle |
⊢ ( ( 𝑥 − 𝑦 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( 𝑥 − 𝑦 ) ) ) ≤ ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
36 |
26 35
|
syl |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ ( 𝑥 − 𝑦 ) ) ) ≤ ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
37 |
34 36
|
eqbrtrrd |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ 𝑥 ) ) ≤ ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
38 |
25 27 37
|
lensymd |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ¬ ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) |
39 |
23 38
|
eqnbrtrd |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ¬ ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) |
40 |
39
|
ex |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( 𝑦 ∈ ℝ → ¬ ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ) |
41 |
40
|
con2d |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) → ¬ 𝑦 ∈ ℝ ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) → ( ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) → ¬ 𝑦 ∈ ℝ ) ) |
43 |
42
|
impr |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ) → ¬ 𝑦 ∈ ℝ ) |
44 |
17 43
|
eldifd |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ) → 𝑦 ∈ ( ℂ ∖ ℝ ) ) |
45 |
44
|
ex |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( ( 𝑦 ∈ ℂ ∧ ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) → 𝑦 ∈ ( ℂ ∖ ℝ ) ) ) |
46 |
16 45
|
sylbid |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( 𝑦 ∈ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) → 𝑦 ∈ ( ℂ ∖ ℝ ) ) ) |
47 |
46
|
ssrdv |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( 𝑥 ( ball ‘ ( abs ∘ − ) ) ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ⊆ ( ℂ ∖ ℝ ) ) |
48 |
|
oveq2 |
⊢ ( 𝑦 = ( abs ‘ ( ℑ ‘ 𝑥 ) ) → ( 𝑥 ( ball ‘ ( abs ∘ − ) ) 𝑦 ) = ( 𝑥 ( ball ‘ ( abs ∘ − ) ) ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ) |
49 |
48
|
sseq1d |
⊢ ( 𝑦 = ( abs ‘ ( ℑ ‘ 𝑥 ) ) → ( ( 𝑥 ( ball ‘ ( abs ∘ − ) ) 𝑦 ) ⊆ ( ℂ ∖ ℝ ) ↔ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ⊆ ( ℂ ∖ ℝ ) ) ) |
50 |
49
|
rspcev |
⊢ ( ( ( abs ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ⊆ ( ℂ ∖ ℝ ) ) → ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) 𝑦 ) ⊆ ( ℂ ∖ ℝ ) ) |
51 |
11 47 50
|
syl2anc |
⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) 𝑦 ) ⊆ ( ℂ ∖ ℝ ) ) |
52 |
51
|
rgen |
⊢ ∀ 𝑥 ∈ ( ℂ ∖ ℝ ) ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) 𝑦 ) ⊆ ( ℂ ∖ ℝ ) |
53 |
1
|
cnfldtopn |
⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |
54 |
53
|
elmopn2 |
⊢ ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) → ( ( ℂ ∖ ℝ ) ∈ 𝐽 ↔ ( ( ℂ ∖ ℝ ) ⊆ ℂ ∧ ∀ 𝑥 ∈ ( ℂ ∖ ℝ ) ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) 𝑦 ) ⊆ ( ℂ ∖ ℝ ) ) ) ) |
55 |
12 54
|
ax-mp |
⊢ ( ( ℂ ∖ ℝ ) ∈ 𝐽 ↔ ( ( ℂ ∖ ℝ ) ⊆ ℂ ∧ ∀ 𝑥 ∈ ( ℂ ∖ ℝ ) ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) 𝑦 ) ⊆ ( ℂ ∖ ℝ ) ) ) |
56 |
2 52 55
|
mpbir2an |
⊢ ( ℂ ∖ ℝ ) ∈ 𝐽 |
57 |
1
|
cnfldtop |
⊢ 𝐽 ∈ Top |
58 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
59 |
53
|
mopnuni |
⊢ ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) → ℂ = ∪ 𝐽 ) |
60 |
12 59
|
ax-mp |
⊢ ℂ = ∪ 𝐽 |
61 |
60
|
iscld2 |
⊢ ( ( 𝐽 ∈ Top ∧ ℝ ⊆ ℂ ) → ( ℝ ∈ ( Clsd ‘ 𝐽 ) ↔ ( ℂ ∖ ℝ ) ∈ 𝐽 ) ) |
62 |
57 58 61
|
mp2an |
⊢ ( ℝ ∈ ( Clsd ‘ 𝐽 ) ↔ ( ℂ ∖ ℝ ) ∈ 𝐽 ) |
63 |
56 62
|
mpbir |
⊢ ℝ ∈ ( Clsd ‘ 𝐽 ) |