Metamath Proof Explorer


Theorem reclem3pr

Description: Lemma for Proposition 9-3.7(v) of Gleason p. 124. (Contributed by NM, 30-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis reclempr.1 𝐵 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q𝑦 ) ∈ 𝐴 ) }
Assertion reclem3pr ( 𝐴P → 1P ⊆ ( 𝐴 ·P 𝐵 ) )

Proof

Step Hyp Ref Expression
1 reclempr.1 𝐵 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q𝑦 ) ∈ 𝐴 ) }
2 df-1p 1P = { 𝑤𝑤 <Q 1Q }
3 2 abeq2i ( 𝑤 ∈ 1P𝑤 <Q 1Q )
4 ltrnq ( 𝑤 <Q 1Q ↔ ( *Q ‘ 1Q ) <Q ( *Q𝑤 ) )
5 mulcomnq ( ( *Q ‘ 1Q ) ·Q 1Q ) = ( 1Q ·Q ( *Q ‘ 1Q ) )
6 1nq 1QQ
7 recclnq ( 1QQ → ( *Q ‘ 1Q ) ∈ Q )
8 mulidnq ( ( *Q ‘ 1Q ) ∈ Q → ( ( *Q ‘ 1Q ) ·Q 1Q ) = ( *Q ‘ 1Q ) )
9 6 7 8 mp2b ( ( *Q ‘ 1Q ) ·Q 1Q ) = ( *Q ‘ 1Q )
10 recidnq ( 1QQ → ( 1Q ·Q ( *Q ‘ 1Q ) ) = 1Q )
11 6 10 ax-mp ( 1Q ·Q ( *Q ‘ 1Q ) ) = 1Q
12 5 9 11 3eqtr3i ( *Q ‘ 1Q ) = 1Q
13 12 breq1i ( ( *Q ‘ 1Q ) <Q ( *Q𝑤 ) ↔ 1Q <Q ( *Q𝑤 ) )
14 4 13 bitri ( 𝑤 <Q 1Q ↔ 1Q <Q ( *Q𝑤 ) )
15 prlem936 ( ( 𝐴P ∧ 1Q <Q ( *Q𝑤 ) ) → ∃ 𝑣𝐴 ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 )
16 14 15 sylan2b ( ( 𝐴P𝑤 <Q 1Q ) → ∃ 𝑣𝐴 ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 )
17 prnmax ( ( 𝐴P𝑣𝐴 ) → ∃ 𝑧𝐴 𝑣 <Q 𝑧 )
18 17 ad2ant2r ( ( ( 𝐴P𝑤 <Q 1Q ) ∧ ( 𝑣𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ) → ∃ 𝑧𝐴 𝑣 <Q 𝑧 )
19 elprnq ( ( 𝐴P𝑣𝐴 ) → 𝑣Q )
20 19 ad2ant2r ( ( ( 𝐴P𝑤 <Q 1Q ) ∧ ( 𝑣𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ) → 𝑣Q )
21 20 3adant3 ( ( ( 𝐴P𝑤 <Q 1Q ) ∧ ( 𝑣𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑣Q )
22 simp1r ( ( ( 𝐴P𝑤 <Q 1Q ) ∧ ( 𝑣𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑤 <Q 1Q )
23 ltrelnq <Q ⊆ ( Q × Q )
24 23 brel ( 𝑤 <Q 1Q → ( 𝑤Q ∧ 1QQ ) )
25 24 simpld ( 𝑤 <Q 1Q𝑤Q )
26 22 25 syl ( ( ( 𝐴P𝑤 <Q 1Q ) ∧ ( 𝑣𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑤Q )
27 simp3 ( ( ( 𝐴P𝑤 <Q 1Q ) ∧ ( 𝑣𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑣 <Q 𝑧 )
28 simp2r ( ( ( 𝐴P𝑤 <Q 1Q ) ∧ ( 𝑣𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 )
29 ltrnq ( 𝑣 <Q 𝑧 ↔ ( *Q𝑧 ) <Q ( *Q𝑣 ) )
30 fvex ( *Q𝑧 ) ∈ V
31 fvex ( *Q𝑣 ) ∈ V
32 ltmnq ( 𝑢Q → ( 𝑥 <Q 𝑦 ↔ ( 𝑢 ·Q 𝑥 ) <Q ( 𝑢 ·Q 𝑦 ) ) )
33 vex 𝑤 ∈ V
34 mulcomnq ( 𝑥 ·Q 𝑦 ) = ( 𝑦 ·Q 𝑥 )
35 30 31 32 33 34 caovord2 ( 𝑤Q → ( ( *Q𝑧 ) <Q ( *Q𝑣 ) ↔ ( ( *Q𝑧 ) ·Q 𝑤 ) <Q ( ( *Q𝑣 ) ·Q 𝑤 ) ) )
36 29 35 syl5bb ( 𝑤Q → ( 𝑣 <Q 𝑧 ↔ ( ( *Q𝑧 ) ·Q 𝑤 ) <Q ( ( *Q𝑣 ) ·Q 𝑤 ) ) )
37 36 adantl ( ( 𝑣Q𝑤Q ) → ( 𝑣 <Q 𝑧 ↔ ( ( *Q𝑧 ) ·Q 𝑤 ) <Q ( ( *Q𝑣 ) ·Q 𝑤 ) ) )
38 37 biimpd ( ( 𝑣Q𝑤Q ) → ( 𝑣 <Q 𝑧 → ( ( *Q𝑧 ) ·Q 𝑤 ) <Q ( ( *Q𝑣 ) ·Q 𝑤 ) ) )
39 mulcomnq ( 𝑣 ·Q ( *Q𝑣 ) ) = ( ( *Q𝑣 ) ·Q 𝑣 )
40 recidnq ( 𝑣Q → ( 𝑣 ·Q ( *Q𝑣 ) ) = 1Q )
41 39 40 eqtr3id ( 𝑣Q → ( ( *Q𝑣 ) ·Q 𝑣 ) = 1Q )
42 recidnq ( 𝑤Q → ( 𝑤 ·Q ( *Q𝑤 ) ) = 1Q )
43 41 42 oveqan12d ( ( 𝑣Q𝑤Q ) → ( ( ( *Q𝑣 ) ·Q 𝑣 ) ·Q ( 𝑤 ·Q ( *Q𝑤 ) ) ) = ( 1Q ·Q 1Q ) )
44 vex 𝑣 ∈ V
45 mulassnq ( ( 𝑥 ·Q 𝑦 ) ·Q 𝑢 ) = ( 𝑥 ·Q ( 𝑦 ·Q 𝑢 ) )
46 fvex ( *Q𝑤 ) ∈ V
47 31 44 33 34 45 46 caov4 ( ( ( *Q𝑣 ) ·Q 𝑣 ) ·Q ( 𝑤 ·Q ( *Q𝑤 ) ) ) = ( ( ( *Q𝑣 ) ·Q 𝑤 ) ·Q ( 𝑣 ·Q ( *Q𝑤 ) ) )
48 mulidnq ( 1QQ → ( 1Q ·Q 1Q ) = 1Q )
49 6 48 ax-mp ( 1Q ·Q 1Q ) = 1Q
50 43 47 49 3eqtr3g ( ( 𝑣Q𝑤Q ) → ( ( ( *Q𝑣 ) ·Q 𝑤 ) ·Q ( 𝑣 ·Q ( *Q𝑤 ) ) ) = 1Q )
51 recclnq ( 𝑣Q → ( *Q𝑣 ) ∈ Q )
52 mulclnq ( ( ( *Q𝑣 ) ∈ Q𝑤Q ) → ( ( *Q𝑣 ) ·Q 𝑤 ) ∈ Q )
53 51 52 sylan ( ( 𝑣Q𝑤Q ) → ( ( *Q𝑣 ) ·Q 𝑤 ) ∈ Q )
54 recmulnq ( ( ( *Q𝑣 ) ·Q 𝑤 ) ∈ Q → ( ( *Q ‘ ( ( *Q𝑣 ) ·Q 𝑤 ) ) = ( 𝑣 ·Q ( *Q𝑤 ) ) ↔ ( ( ( *Q𝑣 ) ·Q 𝑤 ) ·Q ( 𝑣 ·Q ( *Q𝑤 ) ) ) = 1Q ) )
55 53 54 syl ( ( 𝑣Q𝑤Q ) → ( ( *Q ‘ ( ( *Q𝑣 ) ·Q 𝑤 ) ) = ( 𝑣 ·Q ( *Q𝑤 ) ) ↔ ( ( ( *Q𝑣 ) ·Q 𝑤 ) ·Q ( 𝑣 ·Q ( *Q𝑤 ) ) ) = 1Q ) )
56 50 55 mpbird ( ( 𝑣Q𝑤Q ) → ( *Q ‘ ( ( *Q𝑣 ) ·Q 𝑤 ) ) = ( 𝑣 ·Q ( *Q𝑤 ) ) )
57 56 eleq1d ( ( 𝑣Q𝑤Q ) → ( ( *Q ‘ ( ( *Q𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ↔ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) )
58 57 notbid ( ( 𝑣Q𝑤Q ) → ( ¬ ( *Q ‘ ( ( *Q𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ↔ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) )
59 58 biimprd ( ( 𝑣Q𝑤Q ) → ( ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 → ¬ ( *Q ‘ ( ( *Q𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) )
60 38 59 anim12d ( ( 𝑣Q𝑤Q ) → ( ( 𝑣 <Q 𝑧 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) → ( ( ( *Q𝑧 ) ·Q 𝑤 ) <Q ( ( *Q𝑣 ) ·Q 𝑤 ) ∧ ¬ ( *Q ‘ ( ( *Q𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) ) )
61 ovex ( ( *Q𝑣 ) ·Q 𝑤 ) ∈ V
62 breq2 ( 𝑦 = ( ( *Q𝑣 ) ·Q 𝑤 ) → ( ( ( *Q𝑧 ) ·Q 𝑤 ) <Q 𝑦 ↔ ( ( *Q𝑧 ) ·Q 𝑤 ) <Q ( ( *Q𝑣 ) ·Q 𝑤 ) ) )
63 fveq2 ( 𝑦 = ( ( *Q𝑣 ) ·Q 𝑤 ) → ( *Q𝑦 ) = ( *Q ‘ ( ( *Q𝑣 ) ·Q 𝑤 ) ) )
64 63 eleq1d ( 𝑦 = ( ( *Q𝑣 ) ·Q 𝑤 ) → ( ( *Q𝑦 ) ∈ 𝐴 ↔ ( *Q ‘ ( ( *Q𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) )
65 64 notbid ( 𝑦 = ( ( *Q𝑣 ) ·Q 𝑤 ) → ( ¬ ( *Q𝑦 ) ∈ 𝐴 ↔ ¬ ( *Q ‘ ( ( *Q𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) )
66 62 65 anbi12d ( 𝑦 = ( ( *Q𝑣 ) ·Q 𝑤 ) → ( ( ( ( *Q𝑧 ) ·Q 𝑤 ) <Q 𝑦 ∧ ¬ ( *Q𝑦 ) ∈ 𝐴 ) ↔ ( ( ( *Q𝑧 ) ·Q 𝑤 ) <Q ( ( *Q𝑣 ) ·Q 𝑤 ) ∧ ¬ ( *Q ‘ ( ( *Q𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) ) )
67 61 66 spcev ( ( ( ( *Q𝑧 ) ·Q 𝑤 ) <Q ( ( *Q𝑣 ) ·Q 𝑤 ) ∧ ¬ ( *Q ‘ ( ( *Q𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) → ∃ 𝑦 ( ( ( *Q𝑧 ) ·Q 𝑤 ) <Q 𝑦 ∧ ¬ ( *Q𝑦 ) ∈ 𝐴 ) )
68 ovex ( ( *Q𝑧 ) ·Q 𝑤 ) ∈ V
69 breq1 ( 𝑥 = ( ( *Q𝑧 ) ·Q 𝑤 ) → ( 𝑥 <Q 𝑦 ↔ ( ( *Q𝑧 ) ·Q 𝑤 ) <Q 𝑦 ) )
70 69 anbi1d ( 𝑥 = ( ( *Q𝑧 ) ·Q 𝑤 ) → ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q𝑦 ) ∈ 𝐴 ) ↔ ( ( ( *Q𝑧 ) ·Q 𝑤 ) <Q 𝑦 ∧ ¬ ( *Q𝑦 ) ∈ 𝐴 ) ) )
71 70 exbidv ( 𝑥 = ( ( *Q𝑧 ) ·Q 𝑤 ) → ( ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q𝑦 ) ∈ 𝐴 ) ↔ ∃ 𝑦 ( ( ( *Q𝑧 ) ·Q 𝑤 ) <Q 𝑦 ∧ ¬ ( *Q𝑦 ) ∈ 𝐴 ) ) )
72 68 71 1 elab2 ( ( ( *Q𝑧 ) ·Q 𝑤 ) ∈ 𝐵 ↔ ∃ 𝑦 ( ( ( *Q𝑧 ) ·Q 𝑤 ) <Q 𝑦 ∧ ¬ ( *Q𝑦 ) ∈ 𝐴 ) )
73 67 72 sylibr ( ( ( ( *Q𝑧 ) ·Q 𝑤 ) <Q ( ( *Q𝑣 ) ·Q 𝑤 ) ∧ ¬ ( *Q ‘ ( ( *Q𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) → ( ( *Q𝑧 ) ·Q 𝑤 ) ∈ 𝐵 )
74 60 73 syl6 ( ( 𝑣Q𝑤Q ) → ( ( 𝑣 <Q 𝑧 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) → ( ( *Q𝑧 ) ·Q 𝑤 ) ∈ 𝐵 ) )
75 74 imp ( ( ( 𝑣Q𝑤Q ) ∧ ( 𝑣 <Q 𝑧 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ) → ( ( *Q𝑧 ) ·Q 𝑤 ) ∈ 𝐵 )
76 21 26 27 28 75 syl22anc ( ( ( 𝐴P𝑤 <Q 1Q ) ∧ ( 𝑣𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → ( ( *Q𝑧 ) ·Q 𝑤 ) ∈ 𝐵 )
77 23 brel ( 𝑣 <Q 𝑧 → ( 𝑣Q𝑧Q ) )
78 77 simprd ( 𝑣 <Q 𝑧𝑧Q )
79 78 3ad2ant3 ( ( ( 𝐴P𝑤 <Q 1Q ) ∧ ( 𝑣𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑧Q )
80 mulidnq ( 𝑤Q → ( 𝑤 ·Q 1Q ) = 𝑤 )
81 mulcomnq ( 𝑤 ·Q 1Q ) = ( 1Q ·Q 𝑤 )
82 80 81 eqtr3di ( 𝑤Q𝑤 = ( 1Q ·Q 𝑤 ) )
83 recidnq ( 𝑧Q → ( 𝑧 ·Q ( *Q𝑧 ) ) = 1Q )
84 83 oveq1d ( 𝑧Q → ( ( 𝑧 ·Q ( *Q𝑧 ) ) ·Q 𝑤 ) = ( 1Q ·Q 𝑤 ) )
85 mulassnq ( ( 𝑧 ·Q ( *Q𝑧 ) ) ·Q 𝑤 ) = ( 𝑧 ·Q ( ( *Q𝑧 ) ·Q 𝑤 ) )
86 84 85 eqtr3di ( 𝑧Q → ( 1Q ·Q 𝑤 ) = ( 𝑧 ·Q ( ( *Q𝑧 ) ·Q 𝑤 ) ) )
87 82 86 sylan9eqr ( ( 𝑧Q𝑤Q ) → 𝑤 = ( 𝑧 ·Q ( ( *Q𝑧 ) ·Q 𝑤 ) ) )
88 79 26 87 syl2anc ( ( ( 𝐴P𝑤 <Q 1Q ) ∧ ( 𝑣𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑤 = ( 𝑧 ·Q ( ( *Q𝑧 ) ·Q 𝑤 ) ) )
89 oveq2 ( 𝑥 = ( ( *Q𝑧 ) ·Q 𝑤 ) → ( 𝑧 ·Q 𝑥 ) = ( 𝑧 ·Q ( ( *Q𝑧 ) ·Q 𝑤 ) ) )
90 89 rspceeqv ( ( ( ( *Q𝑧 ) ·Q 𝑤 ) ∈ 𝐵𝑤 = ( 𝑧 ·Q ( ( *Q𝑧 ) ·Q 𝑤 ) ) ) → ∃ 𝑥𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) )
91 76 88 90 syl2anc ( ( ( 𝐴P𝑤 <Q 1Q ) ∧ ( 𝑣𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → ∃ 𝑥𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) )
92 91 3expia ( ( ( 𝐴P𝑤 <Q 1Q ) ∧ ( 𝑣𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ) → ( 𝑣 <Q 𝑧 → ∃ 𝑥𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) )
93 92 reximdv ( ( ( 𝐴P𝑤 <Q 1Q ) ∧ ( 𝑣𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ) → ( ∃ 𝑧𝐴 𝑣 <Q 𝑧 → ∃ 𝑧𝐴𝑥𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) )
94 1 reclem2pr ( 𝐴P𝐵P )
95 df-mp ·P = ( 𝑦P , 𝑤P ↦ { 𝑢 ∣ ∃ 𝑓𝑦𝑔𝑤 𝑢 = ( 𝑓 ·Q 𝑔 ) } )
96 mulclnq ( ( 𝑓Q𝑔Q ) → ( 𝑓 ·Q 𝑔 ) ∈ Q )
97 95 96 genpelv ( ( 𝐴P𝐵P ) → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑧𝐴𝑥𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) )
98 94 97 mpdan ( 𝐴P → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑧𝐴𝑥𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) )
99 98 ad2antrr ( ( ( 𝐴P𝑤 <Q 1Q ) ∧ ( 𝑣𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ) → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑧𝐴𝑥𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) )
100 93 99 sylibrd ( ( ( 𝐴P𝑤 <Q 1Q ) ∧ ( 𝑣𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ) → ( ∃ 𝑧𝐴 𝑣 <Q 𝑧𝑤 ∈ ( 𝐴 ·P 𝐵 ) ) )
101 18 100 mpd ( ( ( 𝐴P𝑤 <Q 1Q ) ∧ ( 𝑣𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q𝑤 ) ) ∈ 𝐴 ) ) → 𝑤 ∈ ( 𝐴 ·P 𝐵 ) )
102 16 101 rexlimddv ( ( 𝐴P𝑤 <Q 1Q ) → 𝑤 ∈ ( 𝐴 ·P 𝐵 ) )
103 102 ex ( 𝐴P → ( 𝑤 <Q 1Q𝑤 ∈ ( 𝐴 ·P 𝐵 ) ) )
104 3 103 syl5bi ( 𝐴P → ( 𝑤 ∈ 1P𝑤 ∈ ( 𝐴 ·P 𝐵 ) ) )
105 104 ssrdv ( 𝐴P → 1P ⊆ ( 𝐴 ·P 𝐵 ) )