Step |
Hyp |
Ref |
Expression |
1 |
|
reclempr.1 |
⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } |
2 |
|
df-1p |
⊢ 1P = { 𝑤 ∣ 𝑤 <Q 1Q } |
3 |
2
|
abeq2i |
⊢ ( 𝑤 ∈ 1P ↔ 𝑤 <Q 1Q ) |
4 |
|
ltrnq |
⊢ ( 𝑤 <Q 1Q ↔ ( *Q ‘ 1Q ) <Q ( *Q ‘ 𝑤 ) ) |
5 |
|
mulcomnq |
⊢ ( ( *Q ‘ 1Q ) ·Q 1Q ) = ( 1Q ·Q ( *Q ‘ 1Q ) ) |
6 |
|
1nq |
⊢ 1Q ∈ Q |
7 |
|
recclnq |
⊢ ( 1Q ∈ Q → ( *Q ‘ 1Q ) ∈ Q ) |
8 |
|
mulidnq |
⊢ ( ( *Q ‘ 1Q ) ∈ Q → ( ( *Q ‘ 1Q ) ·Q 1Q ) = ( *Q ‘ 1Q ) ) |
9 |
6 7 8
|
mp2b |
⊢ ( ( *Q ‘ 1Q ) ·Q 1Q ) = ( *Q ‘ 1Q ) |
10 |
|
recidnq |
⊢ ( 1Q ∈ Q → ( 1Q ·Q ( *Q ‘ 1Q ) ) = 1Q ) |
11 |
6 10
|
ax-mp |
⊢ ( 1Q ·Q ( *Q ‘ 1Q ) ) = 1Q |
12 |
5 9 11
|
3eqtr3i |
⊢ ( *Q ‘ 1Q ) = 1Q |
13 |
12
|
breq1i |
⊢ ( ( *Q ‘ 1Q ) <Q ( *Q ‘ 𝑤 ) ↔ 1Q <Q ( *Q ‘ 𝑤 ) ) |
14 |
4 13
|
bitri |
⊢ ( 𝑤 <Q 1Q ↔ 1Q <Q ( *Q ‘ 𝑤 ) ) |
15 |
|
prlem936 |
⊢ ( ( 𝐴 ∈ P ∧ 1Q <Q ( *Q ‘ 𝑤 ) ) → ∃ 𝑣 ∈ 𝐴 ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) |
16 |
14 15
|
sylan2b |
⊢ ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) → ∃ 𝑣 ∈ 𝐴 ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) |
17 |
|
prnmax |
⊢ ( ( 𝐴 ∈ P ∧ 𝑣 ∈ 𝐴 ) → ∃ 𝑧 ∈ 𝐴 𝑣 <Q 𝑧 ) |
18 |
17
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ 𝐴 𝑣 <Q 𝑧 ) |
19 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑣 ∈ 𝐴 ) → 𝑣 ∈ Q ) |
20 |
19
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) → 𝑣 ∈ Q ) |
21 |
20
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑣 ∈ Q ) |
22 |
|
simp1r |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑤 <Q 1Q ) |
23 |
|
ltrelnq |
⊢ <Q ⊆ ( Q × Q ) |
24 |
23
|
brel |
⊢ ( 𝑤 <Q 1Q → ( 𝑤 ∈ Q ∧ 1Q ∈ Q ) ) |
25 |
24
|
simpld |
⊢ ( 𝑤 <Q 1Q → 𝑤 ∈ Q ) |
26 |
22 25
|
syl |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑤 ∈ Q ) |
27 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑣 <Q 𝑧 ) |
28 |
|
simp2r |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) |
29 |
|
ltrnq |
⊢ ( 𝑣 <Q 𝑧 ↔ ( *Q ‘ 𝑧 ) <Q ( *Q ‘ 𝑣 ) ) |
30 |
|
fvex |
⊢ ( *Q ‘ 𝑧 ) ∈ V |
31 |
|
fvex |
⊢ ( *Q ‘ 𝑣 ) ∈ V |
32 |
|
ltmnq |
⊢ ( 𝑢 ∈ Q → ( 𝑥 <Q 𝑦 ↔ ( 𝑢 ·Q 𝑥 ) <Q ( 𝑢 ·Q 𝑦 ) ) ) |
33 |
|
vex |
⊢ 𝑤 ∈ V |
34 |
|
mulcomnq |
⊢ ( 𝑥 ·Q 𝑦 ) = ( 𝑦 ·Q 𝑥 ) |
35 |
30 31 32 33 34
|
caovord2 |
⊢ ( 𝑤 ∈ Q → ( ( *Q ‘ 𝑧 ) <Q ( *Q ‘ 𝑣 ) ↔ ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ) |
36 |
29 35
|
syl5bb |
⊢ ( 𝑤 ∈ Q → ( 𝑣 <Q 𝑧 ↔ ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ) |
37 |
36
|
adantl |
⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( 𝑣 <Q 𝑧 ↔ ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ) |
38 |
37
|
biimpd |
⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( 𝑣 <Q 𝑧 → ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ) |
39 |
|
mulcomnq |
⊢ ( 𝑣 ·Q ( *Q ‘ 𝑣 ) ) = ( ( *Q ‘ 𝑣 ) ·Q 𝑣 ) |
40 |
|
recidnq |
⊢ ( 𝑣 ∈ Q → ( 𝑣 ·Q ( *Q ‘ 𝑣 ) ) = 1Q ) |
41 |
39 40
|
eqtr3id |
⊢ ( 𝑣 ∈ Q → ( ( *Q ‘ 𝑣 ) ·Q 𝑣 ) = 1Q ) |
42 |
|
recidnq |
⊢ ( 𝑤 ∈ Q → ( 𝑤 ·Q ( *Q ‘ 𝑤 ) ) = 1Q ) |
43 |
41 42
|
oveqan12d |
⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( ( *Q ‘ 𝑣 ) ·Q 𝑣 ) ·Q ( 𝑤 ·Q ( *Q ‘ 𝑤 ) ) ) = ( 1Q ·Q 1Q ) ) |
44 |
|
vex |
⊢ 𝑣 ∈ V |
45 |
|
mulassnq |
⊢ ( ( 𝑥 ·Q 𝑦 ) ·Q 𝑢 ) = ( 𝑥 ·Q ( 𝑦 ·Q 𝑢 ) ) |
46 |
|
fvex |
⊢ ( *Q ‘ 𝑤 ) ∈ V |
47 |
31 44 33 34 45 46
|
caov4 |
⊢ ( ( ( *Q ‘ 𝑣 ) ·Q 𝑣 ) ·Q ( 𝑤 ·Q ( *Q ‘ 𝑤 ) ) ) = ( ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ·Q ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ) |
48 |
|
mulidnq |
⊢ ( 1Q ∈ Q → ( 1Q ·Q 1Q ) = 1Q ) |
49 |
6 48
|
ax-mp |
⊢ ( 1Q ·Q 1Q ) = 1Q |
50 |
43 47 49
|
3eqtr3g |
⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ·Q ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ) = 1Q ) |
51 |
|
recclnq |
⊢ ( 𝑣 ∈ Q → ( *Q ‘ 𝑣 ) ∈ Q ) |
52 |
|
mulclnq |
⊢ ( ( ( *Q ‘ 𝑣 ) ∈ Q ∧ 𝑤 ∈ Q ) → ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ∈ Q ) |
53 |
51 52
|
sylan |
⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ∈ Q ) |
54 |
|
recmulnq |
⊢ ( ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ∈ Q → ( ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) = ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ↔ ( ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ·Q ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ) = 1Q ) ) |
55 |
53 54
|
syl |
⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) = ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ↔ ( ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ·Q ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ) = 1Q ) ) |
56 |
50 55
|
mpbird |
⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) = ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ) |
57 |
56
|
eleq1d |
⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ↔ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) |
58 |
57
|
notbid |
⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ¬ ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ↔ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) |
59 |
58
|
biimprd |
⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 → ¬ ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) ) |
60 |
38 59
|
anim12d |
⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( 𝑣 <Q 𝑧 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) → ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ∧ ¬ ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) ) ) |
61 |
|
ovex |
⊢ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ∈ V |
62 |
|
breq2 |
⊢ ( 𝑦 = ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) → ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q 𝑦 ↔ ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ) |
63 |
|
fveq2 |
⊢ ( 𝑦 = ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) → ( *Q ‘ 𝑦 ) = ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ) |
64 |
63
|
eleq1d |
⊢ ( 𝑦 = ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) → ( ( *Q ‘ 𝑦 ) ∈ 𝐴 ↔ ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) ) |
65 |
64
|
notbid |
⊢ ( 𝑦 = ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) → ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ↔ ¬ ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) ) |
66 |
62 65
|
anbi12d |
⊢ ( 𝑦 = ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) → ( ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ∧ ¬ ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) ) ) |
67 |
61 66
|
spcev |
⊢ ( ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ∧ ¬ ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) → ∃ 𝑦 ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
68 |
|
ovex |
⊢ ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ∈ V |
69 |
|
breq1 |
⊢ ( 𝑥 = ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) → ( 𝑥 <Q 𝑦 ↔ ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q 𝑦 ) ) |
70 |
69
|
anbi1d |
⊢ ( 𝑥 = ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) → ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
71 |
70
|
exbidv |
⊢ ( 𝑥 = ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) → ( ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ∃ 𝑦 ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
72 |
68 71 1
|
elab2 |
⊢ ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ∈ 𝐵 ↔ ∃ 𝑦 ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
73 |
67 72
|
sylibr |
⊢ ( ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ∧ ¬ ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) → ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ∈ 𝐵 ) |
74 |
60 73
|
syl6 |
⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( 𝑣 <Q 𝑧 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) → ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ∈ 𝐵 ) ) |
75 |
74
|
imp |
⊢ ( ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑣 <Q 𝑧 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) → ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ∈ 𝐵 ) |
76 |
21 26 27 28 75
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ∈ 𝐵 ) |
77 |
23
|
brel |
⊢ ( 𝑣 <Q 𝑧 → ( 𝑣 ∈ Q ∧ 𝑧 ∈ Q ) ) |
78 |
77
|
simprd |
⊢ ( 𝑣 <Q 𝑧 → 𝑧 ∈ Q ) |
79 |
78
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑧 ∈ Q ) |
80 |
|
mulidnq |
⊢ ( 𝑤 ∈ Q → ( 𝑤 ·Q 1Q ) = 𝑤 ) |
81 |
|
mulcomnq |
⊢ ( 𝑤 ·Q 1Q ) = ( 1Q ·Q 𝑤 ) |
82 |
80 81
|
eqtr3di |
⊢ ( 𝑤 ∈ Q → 𝑤 = ( 1Q ·Q 𝑤 ) ) |
83 |
|
recidnq |
⊢ ( 𝑧 ∈ Q → ( 𝑧 ·Q ( *Q ‘ 𝑧 ) ) = 1Q ) |
84 |
83
|
oveq1d |
⊢ ( 𝑧 ∈ Q → ( ( 𝑧 ·Q ( *Q ‘ 𝑧 ) ) ·Q 𝑤 ) = ( 1Q ·Q 𝑤 ) ) |
85 |
|
mulassnq |
⊢ ( ( 𝑧 ·Q ( *Q ‘ 𝑧 ) ) ·Q 𝑤 ) = ( 𝑧 ·Q ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ) |
86 |
84 85
|
eqtr3di |
⊢ ( 𝑧 ∈ Q → ( 1Q ·Q 𝑤 ) = ( 𝑧 ·Q ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ) ) |
87 |
82 86
|
sylan9eqr |
⊢ ( ( 𝑧 ∈ Q ∧ 𝑤 ∈ Q ) → 𝑤 = ( 𝑧 ·Q ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ) ) |
88 |
79 26 87
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑤 = ( 𝑧 ·Q ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ) ) |
89 |
|
oveq2 |
⊢ ( 𝑥 = ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) → ( 𝑧 ·Q 𝑥 ) = ( 𝑧 ·Q ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ) ) |
90 |
89
|
rspceeqv |
⊢ ( ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ∈ 𝐵 ∧ 𝑤 = ( 𝑧 ·Q ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ) ) → ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) |
91 |
76 88 90
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) |
92 |
91
|
3expia |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) → ( 𝑣 <Q 𝑧 → ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) ) |
93 |
92
|
reximdv |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) → ( ∃ 𝑧 ∈ 𝐴 𝑣 <Q 𝑧 → ∃ 𝑧 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) ) |
94 |
1
|
reclem2pr |
⊢ ( 𝐴 ∈ P → 𝐵 ∈ P ) |
95 |
|
df-mp |
⊢ ·P = ( 𝑦 ∈ P , 𝑤 ∈ P ↦ { 𝑢 ∣ ∃ 𝑓 ∈ 𝑦 ∃ 𝑔 ∈ 𝑤 𝑢 = ( 𝑓 ·Q 𝑔 ) } ) |
96 |
|
mulclnq |
⊢ ( ( 𝑓 ∈ Q ∧ 𝑔 ∈ Q ) → ( 𝑓 ·Q 𝑔 ) ∈ Q ) |
97 |
95 96
|
genpelv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) ) |
98 |
94 97
|
mpdan |
⊢ ( 𝐴 ∈ P → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) ) |
99 |
98
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) ) |
100 |
93 99
|
sylibrd |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) → ( ∃ 𝑧 ∈ 𝐴 𝑣 <Q 𝑧 → 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ) ) |
101 |
18 100
|
mpd |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) → 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ) |
102 |
16 101
|
rexlimddv |
⊢ ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) → 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ) |
103 |
102
|
ex |
⊢ ( 𝐴 ∈ P → ( 𝑤 <Q 1Q → 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ) ) |
104 |
3 103
|
syl5bi |
⊢ ( 𝐴 ∈ P → ( 𝑤 ∈ 1P → 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ) ) |
105 |
104
|
ssrdv |
⊢ ( 𝐴 ∈ P → 1P ⊆ ( 𝐴 ·P 𝐵 ) ) |