Step |
Hyp |
Ref |
Expression |
1 |
|
reclempr.1 |
⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } |
2 |
1
|
reclem2pr |
⊢ ( 𝐴 ∈ P → 𝐵 ∈ P ) |
3 |
|
df-mp |
⊢ ·P = ( 𝑦 ∈ P , 𝑤 ∈ P ↦ { 𝑢 ∣ ∃ 𝑓 ∈ 𝑦 ∃ 𝑔 ∈ 𝑤 𝑢 = ( 𝑓 ·Q 𝑔 ) } ) |
4 |
|
mulclnq |
⊢ ( ( 𝑓 ∈ Q ∧ 𝑔 ∈ Q ) → ( 𝑓 ·Q 𝑔 ) ∈ Q ) |
5 |
3 4
|
genpelv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) ) |
6 |
2 5
|
mpdan |
⊢ ( 𝐴 ∈ P → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) ) |
7 |
1
|
abeq2i |
⊢ ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
8 |
|
ltrelnq |
⊢ <Q ⊆ ( Q × Q ) |
9 |
8
|
brel |
⊢ ( 𝑥 <Q 𝑦 → ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ) |
10 |
9
|
simprd |
⊢ ( 𝑥 <Q 𝑦 → 𝑦 ∈ Q ) |
11 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ Q ) |
12 |
|
ltmnq |
⊢ ( 𝑧 ∈ Q → ( 𝑥 <Q 𝑦 ↔ ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 <Q 𝑦 ↔ ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ) ) |
14 |
13
|
biimpd |
⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 <Q 𝑦 → ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ Q ) → ( 𝑥 <Q 𝑦 → ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ) ) |
16 |
|
recclnq |
⊢ ( 𝑦 ∈ Q → ( *Q ‘ 𝑦 ) ∈ Q ) |
17 |
|
prub |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ ( *Q ‘ 𝑦 ) ∈ Q ) → ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → 𝑧 <Q ( *Q ‘ 𝑦 ) ) ) |
18 |
16 17
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ Q ) → ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → 𝑧 <Q ( *Q ‘ 𝑦 ) ) ) |
19 |
|
ltmnq |
⊢ ( 𝑦 ∈ Q → ( 𝑧 <Q ( *Q ‘ 𝑦 ) ↔ ( 𝑦 ·Q 𝑧 ) <Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) ) |
20 |
|
mulcomnq |
⊢ ( 𝑦 ·Q 𝑧 ) = ( 𝑧 ·Q 𝑦 ) |
21 |
20
|
a1i |
⊢ ( 𝑦 ∈ Q → ( 𝑦 ·Q 𝑧 ) = ( 𝑧 ·Q 𝑦 ) ) |
22 |
|
recidnq |
⊢ ( 𝑦 ∈ Q → ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) = 1Q ) |
23 |
21 22
|
breq12d |
⊢ ( 𝑦 ∈ Q → ( ( 𝑦 ·Q 𝑧 ) <Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ↔ ( 𝑧 ·Q 𝑦 ) <Q 1Q ) ) |
24 |
19 23
|
bitrd |
⊢ ( 𝑦 ∈ Q → ( 𝑧 <Q ( *Q ‘ 𝑦 ) ↔ ( 𝑧 ·Q 𝑦 ) <Q 1Q ) ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ Q ) → ( 𝑧 <Q ( *Q ‘ 𝑦 ) ↔ ( 𝑧 ·Q 𝑦 ) <Q 1Q ) ) |
26 |
18 25
|
sylibd |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ Q ) → ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → ( 𝑧 ·Q 𝑦 ) <Q 1Q ) ) |
27 |
15 26
|
anim12d |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ Q ) → ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ( ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ∧ ( 𝑧 ·Q 𝑦 ) <Q 1Q ) ) ) |
28 |
|
ltsonq |
⊢ <Q Or Q |
29 |
28 8
|
sotri |
⊢ ( ( ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ∧ ( 𝑧 ·Q 𝑦 ) <Q 1Q ) → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) |
30 |
27 29
|
syl6 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ Q ) → ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) |
31 |
30
|
exp4b |
⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 ∈ Q → ( 𝑥 <Q 𝑦 → ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) ) ) |
32 |
10 31
|
syl5 |
⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 <Q 𝑦 → ( 𝑥 <Q 𝑦 → ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) ) ) |
33 |
32
|
pm2.43d |
⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 <Q 𝑦 → ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) ) |
34 |
33
|
impd |
⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) |
35 |
34
|
exlimdv |
⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) |
36 |
7 35
|
syl5bi |
⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) |
37 |
|
breq1 |
⊢ ( 𝑤 = ( 𝑧 ·Q 𝑥 ) → ( 𝑤 <Q 1Q ↔ ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) |
38 |
37
|
biimprcd |
⊢ ( ( 𝑧 ·Q 𝑥 ) <Q 1Q → ( 𝑤 = ( 𝑧 ·Q 𝑥 ) → 𝑤 <Q 1Q ) ) |
39 |
36 38
|
syl6 |
⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 → ( 𝑤 = ( 𝑧 ·Q 𝑥 ) → 𝑤 <Q 1Q ) ) ) |
40 |
39
|
expimpd |
⊢ ( 𝐴 ∈ P → ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑤 = ( 𝑧 ·Q 𝑥 ) → 𝑤 <Q 1Q ) ) ) |
41 |
40
|
rexlimdvv |
⊢ ( 𝐴 ∈ P → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) → 𝑤 <Q 1Q ) ) |
42 |
6 41
|
sylbid |
⊢ ( 𝐴 ∈ P → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) → 𝑤 <Q 1Q ) ) |
43 |
|
df-1p |
⊢ 1P = { 𝑤 ∣ 𝑤 <Q 1Q } |
44 |
43
|
abeq2i |
⊢ ( 𝑤 ∈ 1P ↔ 𝑤 <Q 1Q ) |
45 |
42 44
|
syl6ibr |
⊢ ( 𝐴 ∈ P → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) → 𝑤 ∈ 1P ) ) |
46 |
45
|
ssrdv |
⊢ ( 𝐴 ∈ P → ( 𝐴 ·P 𝐵 ) ⊆ 1P ) |
47 |
1
|
reclem3pr |
⊢ ( 𝐴 ∈ P → 1P ⊆ ( 𝐴 ·P 𝐵 ) ) |
48 |
46 47
|
eqssd |
⊢ ( 𝐴 ∈ P → ( 𝐴 ·P 𝐵 ) = 1P ) |