Step |
Hyp |
Ref |
Expression |
1 |
|
reclimc.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
2 |
|
reclimc.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) |
3 |
|
reclimc.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( ℂ ∖ { 0 } ) ) |
4 |
|
reclimc.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐹 limℂ 𝐷 ) ) |
5 |
|
reclimc.cne0 |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐵 ) ) |
7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · 𝐶 ) ) |
8 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐶 − 𝐵 ) / ( 𝐵 · 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐶 − 𝐵 ) / ( 𝐵 · 𝐶 ) ) ) |
9 |
|
limccl |
⊢ ( 𝐹 limℂ 𝐷 ) ⊆ ℂ |
10 |
9 4
|
sselid |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
12 |
3
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
13 |
11 12
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 − 𝐵 ) ∈ ℂ ) |
14 |
12 11
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
15 |
|
eldifsni |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 } ) → 𝐵 ≠ 0 ) |
16 |
3 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≠ 0 ) |
17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ≠ 0 ) |
18 |
12 11 16 17
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 · 𝐶 ) ≠ 0 ) |
19 |
18
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ¬ ( 𝐵 · 𝐶 ) = 0 ) |
20 |
|
elsng |
⊢ ( ( 𝐵 · 𝐶 ) ∈ ℂ → ( ( 𝐵 · 𝐶 ) ∈ { 0 } ↔ ( 𝐵 · 𝐶 ) = 0 ) ) |
21 |
14 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 · 𝐶 ) ∈ { 0 } ↔ ( 𝐵 · 𝐶 ) = 0 ) ) |
22 |
19 21
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ¬ ( 𝐵 · 𝐶 ) ∈ { 0 } ) |
23 |
14 22
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 · 𝐶 ) ∈ ( ℂ ∖ { 0 } ) ) |
24 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
25 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) |
26 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 + - 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 + - 𝐵 ) ) |
27 |
12
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℂ ) |
28 |
1 12 4
|
limcmptdm |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
29 |
|
limcrcl |
⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐷 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ ) ) |
30 |
4 29
|
syl |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ ) ) |
31 |
30
|
simp3d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
32 |
24 28 10 31
|
constlimc |
⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) limℂ 𝐷 ) ) |
33 |
1 25 12 4
|
neglimc |
⊢ ( 𝜑 → - 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) limℂ 𝐷 ) ) |
34 |
24 25 26 11 27 32 33
|
addlimc |
⊢ ( 𝜑 → ( 𝐶 + - 𝐶 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 + - 𝐵 ) ) limℂ 𝐷 ) ) |
35 |
10
|
negidd |
⊢ ( 𝜑 → ( 𝐶 + - 𝐶 ) = 0 ) |
36 |
11 12
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 + - 𝐵 ) = ( 𝐶 − 𝐵 ) ) |
37 |
36
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 + - 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐵 ) ) ) |
38 |
37
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 + - 𝐵 ) ) limℂ 𝐷 ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐵 ) ) limℂ 𝐷 ) ) |
39 |
34 35 38
|
3eltr3d |
⊢ ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐵 ) ) limℂ 𝐷 ) ) |
40 |
1 24 7 12 11 4 32
|
mullimc |
⊢ ( 𝜑 → ( 𝐶 · 𝐶 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · 𝐶 ) ) limℂ 𝐷 ) ) |
41 |
10 10 5 5
|
mulne0d |
⊢ ( 𝜑 → ( 𝐶 · 𝐶 ) ≠ 0 ) |
42 |
6 7 8 13 23 39 40 41
|
0ellimcdiv |
⊢ ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐶 − 𝐵 ) / ( 𝐵 · 𝐶 ) ) ) limℂ 𝐷 ) ) |
43 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 1 ∈ ℂ ) |
44 |
43 12 43 11 16 17
|
divsubdivd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 1 / 𝐵 ) − ( 1 / 𝐶 ) ) = ( ( ( 1 · 𝐶 ) − ( 1 · 𝐵 ) ) / ( 𝐵 · 𝐶 ) ) ) |
45 |
11
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 1 · 𝐶 ) = 𝐶 ) |
46 |
12
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 1 · 𝐵 ) = 𝐵 ) |
47 |
45 46
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 1 · 𝐶 ) − ( 1 · 𝐵 ) ) = ( 𝐶 − 𝐵 ) ) |
48 |
47
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 1 · 𝐶 ) − ( 1 · 𝐵 ) ) / ( 𝐵 · 𝐶 ) ) = ( ( 𝐶 − 𝐵 ) / ( 𝐵 · 𝐶 ) ) ) |
49 |
44 48
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐶 − 𝐵 ) / ( 𝐵 · 𝐶 ) ) = ( ( 1 / 𝐵 ) − ( 1 / 𝐶 ) ) ) |
50 |
49
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐶 − 𝐵 ) / ( 𝐵 · 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 1 / 𝐵 ) − ( 1 / 𝐶 ) ) ) ) |
51 |
50
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐶 − 𝐵 ) / ( 𝐵 · 𝐶 ) ) ) limℂ 𝐷 ) = ( ( 𝑥 ∈ 𝐴 ↦ ( ( 1 / 𝐵 ) − ( 1 / 𝐶 ) ) ) limℂ 𝐷 ) ) |
52 |
42 51
|
eleqtrd |
⊢ ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( ( 1 / 𝐵 ) − ( 1 / 𝐶 ) ) ) limℂ 𝐷 ) ) |
53 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( ( 1 / 𝐵 ) − ( 1 / 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 1 / 𝐵 ) − ( 1 / 𝐶 ) ) ) |
54 |
12 16
|
reccld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 1 / 𝐵 ) ∈ ℂ ) |
55 |
10 5
|
reccld |
⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ℂ ) |
56 |
2 53 28 54 31 55
|
ellimcabssub0 |
⊢ ( 𝜑 → ( ( 1 / 𝐶 ) ∈ ( 𝐺 limℂ 𝐷 ) ↔ 0 ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( ( 1 / 𝐵 ) − ( 1 / 𝐶 ) ) ) limℂ 𝐷 ) ) ) |
57 |
52 56
|
mpbird |
⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ( 𝐺 limℂ 𝐷 ) ) |