Step |
Hyp |
Ref |
Expression |
1 |
|
reclt0.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
reclt0.2 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
3 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐴 ∈ ℝ ) |
4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐴 < 0 ) |
5 |
3 4
|
reclt0d |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 1 / 𝐴 ) < 0 ) |
6 |
5
|
ex |
⊢ ( 𝜑 → ( 𝐴 < 0 → ( 1 / 𝐴 ) < 0 ) ) |
7 |
|
0red |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 0 ) → 0 ∈ ℝ ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 0 ) → 𝐴 ∈ ℝ ) |
9 |
2
|
necomd |
⊢ ( 𝜑 → 0 ≠ 𝐴 ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 0 ) → 0 ≠ 𝐴 ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 0 ) → ¬ 𝐴 < 0 ) |
12 |
7 8 10 11
|
lttri5d |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 0 ) → 0 < 𝐴 ) |
13 |
|
0red |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 0 ∈ ℝ ) |
14 |
1 2
|
rereccld |
⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ ℝ ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
16 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 0 < 𝐴 ) |
18 |
16 17
|
recgt0d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) |
19 |
13 15 18
|
ltled |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 0 ≤ ( 1 / 𝐴 ) ) |
20 |
13 15
|
lenltd |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 0 ≤ ( 1 / 𝐴 ) ↔ ¬ ( 1 / 𝐴 ) < 0 ) ) |
21 |
19 20
|
mpbid |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ¬ ( 1 / 𝐴 ) < 0 ) |
22 |
12 21
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 0 ) → ¬ ( 1 / 𝐴 ) < 0 ) |
23 |
22
|
ex |
⊢ ( 𝜑 → ( ¬ 𝐴 < 0 → ¬ ( 1 / 𝐴 ) < 0 ) ) |
24 |
23
|
con4d |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) < 0 → 𝐴 < 0 ) ) |
25 |
24
|
imp |
⊢ ( ( 𝜑 ∧ ( 1 / 𝐴 ) < 0 ) → 𝐴 < 0 ) |
26 |
25
|
ex |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) < 0 → 𝐴 < 0 ) ) |
27 |
6 26
|
impbid |
⊢ ( 𝜑 → ( 𝐴 < 0 ↔ ( 1 / 𝐴 ) < 0 ) ) |