Metamath Proof Explorer


Theorem reclt1d

Description: The reciprocal of a positive number less than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
Assertion reclt1d ( 𝜑 → ( 𝐴 < 1 ↔ 1 < ( 1 / 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
2 1 rpregt0d ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )
3 reclt1 ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 < 1 ↔ 1 < ( 1 / 𝐴 ) ) )
4 2 3 syl ( 𝜑 → ( 𝐴 < 1 ↔ 1 < ( 1 / 𝐴 ) ) )