Metamath Proof Explorer


Theorem recmet

Description: The real numbers are a complete metric space. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion recmet ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( CMet ‘ ℝ )

Proof

Step Hyp Ref Expression
1 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
2 1 recld2 ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) )
3 eqid ( abs ∘ − ) = ( abs ∘ − )
4 3 cncmet ( abs ∘ − ) ∈ ( CMet ‘ ℂ )
5 1 cnfldtopn ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) )
6 5 cmetss ( ( abs ∘ − ) ∈ ( CMet ‘ ℂ ) → ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( CMet ‘ ℝ ) ↔ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) )
7 4 6 ax-mp ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( CMet ‘ ℝ ) ↔ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) )
8 2 7 mpbir ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( CMet ‘ ℝ )