Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
2 |
1
|
recld2 |
⊢ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
3 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
4 |
3
|
cncmet |
⊢ ( abs ∘ − ) ∈ ( CMet ‘ ℂ ) |
5 |
1
|
cnfldtopn |
⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
6 |
5
|
cmetss |
⊢ ( ( abs ∘ − ) ∈ ( CMet ‘ ℂ ) → ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( CMet ‘ ℝ ) ↔ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) ) |
7 |
4 6
|
ax-mp |
⊢ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( CMet ‘ ℝ ) ↔ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
8 |
2 7
|
mpbir |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( CMet ‘ ℝ ) |