Metamath Proof Explorer


Theorem recn

Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999)

Ref Expression
Assertion recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )

Proof

Step Hyp Ref Expression
1 ax-resscn ℝ ⊆ ℂ
2 1 sseli ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )