Metamath Proof Explorer


Theorem recni

Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995)

Ref Expression
Hypothesis recni.1 𝐴 ∈ ℝ
Assertion recni 𝐴 ∈ ℂ

Proof

Step Hyp Ref Expression
1 recni.1 𝐴 ∈ ℝ
2 ax-resscn ℝ ⊆ ℂ
3 2 1 sselii 𝐴 ∈ ℂ