Metamath Proof Explorer


Theorem recnnltrp

Description: N is a natural number large enough that its reciprocal is smaller than the given positive E . (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypothesis recnnltrp.1 𝑁 = ( ( ⌊ ‘ ( 1 / 𝐸 ) ) + 1 )
Assertion recnnltrp ( 𝐸 ∈ ℝ+ → ( 𝑁 ∈ ℕ ∧ ( 1 / 𝑁 ) < 𝐸 ) )

Proof

Step Hyp Ref Expression
1 recnnltrp.1 𝑁 = ( ( ⌊ ‘ ( 1 / 𝐸 ) ) + 1 )
2 rpreccl ( 𝐸 ∈ ℝ+ → ( 1 / 𝐸 ) ∈ ℝ+ )
3 2 rpred ( 𝐸 ∈ ℝ+ → ( 1 / 𝐸 ) ∈ ℝ )
4 2 rpge0d ( 𝐸 ∈ ℝ+ → 0 ≤ ( 1 / 𝐸 ) )
5 flge0nn0 ( ( ( 1 / 𝐸 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝐸 ) ) → ( ⌊ ‘ ( 1 / 𝐸 ) ) ∈ ℕ0 )
6 3 4 5 syl2anc ( 𝐸 ∈ ℝ+ → ( ⌊ ‘ ( 1 / 𝐸 ) ) ∈ ℕ0 )
7 nn0p1nn ( ( ⌊ ‘ ( 1 / 𝐸 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 1 / 𝐸 ) ) + 1 ) ∈ ℕ )
8 6 7 syl ( 𝐸 ∈ ℝ+ → ( ( ⌊ ‘ ( 1 / 𝐸 ) ) + 1 ) ∈ ℕ )
9 1 8 eqeltrid ( 𝐸 ∈ ℝ+𝑁 ∈ ℕ )
10 flltp1 ( ( 1 / 𝐸 ) ∈ ℝ → ( 1 / 𝐸 ) < ( ( ⌊ ‘ ( 1 / 𝐸 ) ) + 1 ) )
11 3 10 syl ( 𝐸 ∈ ℝ+ → ( 1 / 𝐸 ) < ( ( ⌊ ‘ ( 1 / 𝐸 ) ) + 1 ) )
12 11 1 breqtrrdi ( 𝐸 ∈ ℝ+ → ( 1 / 𝐸 ) < 𝑁 )
13 9 nnrpd ( 𝐸 ∈ ℝ+𝑁 ∈ ℝ+ )
14 2 13 ltrecd ( 𝐸 ∈ ℝ+ → ( ( 1 / 𝐸 ) < 𝑁 ↔ ( 1 / 𝑁 ) < ( 1 / ( 1 / 𝐸 ) ) ) )
15 12 14 mpbid ( 𝐸 ∈ ℝ+ → ( 1 / 𝑁 ) < ( 1 / ( 1 / 𝐸 ) ) )
16 rpcn ( 𝐸 ∈ ℝ+𝐸 ∈ ℂ )
17 rpne0 ( 𝐸 ∈ ℝ+𝐸 ≠ 0 )
18 16 17 recrecd ( 𝐸 ∈ ℝ+ → ( 1 / ( 1 / 𝐸 ) ) = 𝐸 )
19 15 18 breqtrd ( 𝐸 ∈ ℝ+ → ( 1 / 𝑁 ) < 𝐸 )
20 9 19 jca ( 𝐸 ∈ ℝ+ → ( 𝑁 ∈ ℕ ∧ ( 1 / 𝑁 ) < 𝐸 ) )