Step |
Hyp |
Ref |
Expression |
1 |
|
recnnltrp.1 |
⊢ 𝑁 = ( ( ⌊ ‘ ( 1 / 𝐸 ) ) + 1 ) |
2 |
|
rpreccl |
⊢ ( 𝐸 ∈ ℝ+ → ( 1 / 𝐸 ) ∈ ℝ+ ) |
3 |
2
|
rpred |
⊢ ( 𝐸 ∈ ℝ+ → ( 1 / 𝐸 ) ∈ ℝ ) |
4 |
2
|
rpge0d |
⊢ ( 𝐸 ∈ ℝ+ → 0 ≤ ( 1 / 𝐸 ) ) |
5 |
|
flge0nn0 |
⊢ ( ( ( 1 / 𝐸 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝐸 ) ) → ( ⌊ ‘ ( 1 / 𝐸 ) ) ∈ ℕ0 ) |
6 |
3 4 5
|
syl2anc |
⊢ ( 𝐸 ∈ ℝ+ → ( ⌊ ‘ ( 1 / 𝐸 ) ) ∈ ℕ0 ) |
7 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ ( 1 / 𝐸 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 1 / 𝐸 ) ) + 1 ) ∈ ℕ ) |
8 |
6 7
|
syl |
⊢ ( 𝐸 ∈ ℝ+ → ( ( ⌊ ‘ ( 1 / 𝐸 ) ) + 1 ) ∈ ℕ ) |
9 |
1 8
|
eqeltrid |
⊢ ( 𝐸 ∈ ℝ+ → 𝑁 ∈ ℕ ) |
10 |
|
flltp1 |
⊢ ( ( 1 / 𝐸 ) ∈ ℝ → ( 1 / 𝐸 ) < ( ( ⌊ ‘ ( 1 / 𝐸 ) ) + 1 ) ) |
11 |
3 10
|
syl |
⊢ ( 𝐸 ∈ ℝ+ → ( 1 / 𝐸 ) < ( ( ⌊ ‘ ( 1 / 𝐸 ) ) + 1 ) ) |
12 |
11 1
|
breqtrrdi |
⊢ ( 𝐸 ∈ ℝ+ → ( 1 / 𝐸 ) < 𝑁 ) |
13 |
9
|
nnrpd |
⊢ ( 𝐸 ∈ ℝ+ → 𝑁 ∈ ℝ+ ) |
14 |
2 13
|
ltrecd |
⊢ ( 𝐸 ∈ ℝ+ → ( ( 1 / 𝐸 ) < 𝑁 ↔ ( 1 / 𝑁 ) < ( 1 / ( 1 / 𝐸 ) ) ) ) |
15 |
12 14
|
mpbid |
⊢ ( 𝐸 ∈ ℝ+ → ( 1 / 𝑁 ) < ( 1 / ( 1 / 𝐸 ) ) ) |
16 |
|
rpcn |
⊢ ( 𝐸 ∈ ℝ+ → 𝐸 ∈ ℂ ) |
17 |
|
rpne0 |
⊢ ( 𝐸 ∈ ℝ+ → 𝐸 ≠ 0 ) |
18 |
16 17
|
recrecd |
⊢ ( 𝐸 ∈ ℝ+ → ( 1 / ( 1 / 𝐸 ) ) = 𝐸 ) |
19 |
15 18
|
breqtrd |
⊢ ( 𝐸 ∈ ℝ+ → ( 1 / 𝑁 ) < 𝐸 ) |
20 |
9 19
|
jca |
⊢ ( 𝐸 ∈ ℝ+ → ( 𝑁 ∈ ℕ ∧ ( 1 / 𝑁 ) < 𝐸 ) ) |