Step |
Hyp |
Ref |
Expression |
1 |
|
recnperf.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
2 |
|
elpri |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
3 |
|
oveq2 |
⊢ ( 𝑆 = ℝ → ( 𝐾 ↾t 𝑆 ) = ( 𝐾 ↾t ℝ ) ) |
4 |
1
|
reperf |
⊢ ( 𝐾 ↾t ℝ ) ∈ Perf |
5 |
3 4
|
eqeltrdi |
⊢ ( 𝑆 = ℝ → ( 𝐾 ↾t 𝑆 ) ∈ Perf ) |
6 |
|
oveq2 |
⊢ ( 𝑆 = ℂ → ( 𝐾 ↾t 𝑆 ) = ( 𝐾 ↾t ℂ ) ) |
7 |
1
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
8 |
7
|
toponunii |
⊢ ℂ = ∪ 𝐾 |
9 |
8
|
restid |
⊢ ( 𝐾 ∈ ( TopOn ‘ ℂ ) → ( 𝐾 ↾t ℂ ) = 𝐾 ) |
10 |
7 9
|
ax-mp |
⊢ ( 𝐾 ↾t ℂ ) = 𝐾 |
11 |
1
|
cnperf |
⊢ 𝐾 ∈ Perf |
12 |
10 11
|
eqeltri |
⊢ ( 𝐾 ↾t ℂ ) ∈ Perf |
13 |
6 12
|
eqeltrdi |
⊢ ( 𝑆 = ℂ → ( 𝐾 ↾t 𝑆 ) ∈ Perf ) |
14 |
5 13
|
jaoi |
⊢ ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ Perf ) |
15 |
2 14
|
syl |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝐾 ↾t 𝑆 ) ∈ Perf ) |