Metamath Proof Explorer


Theorem recnprss

Description: Both RR and CC are subsets of CC . (Contributed by Mario Carneiro, 10-Feb-2015)

Ref Expression
Assertion recnprss ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ )

Proof

Step Hyp Ref Expression
1 elpri ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) )
2 ax-resscn ℝ ⊆ ℂ
3 sseq1 ( 𝑆 = ℝ → ( 𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ ) )
4 2 3 mpbiri ( 𝑆 = ℝ → 𝑆 ⊆ ℂ )
5 eqimss ( 𝑆 = ℂ → 𝑆 ⊆ ℂ )
6 4 5 jaoi ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → 𝑆 ⊆ ℂ )
7 1 6 syl ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ )