Step |
Hyp |
Ref |
Expression |
1 |
|
recgt1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 0 < ( 1 / 𝐴 ) ∧ ( 1 / 𝐴 ) < 1 ) ) |
2 |
1
|
simprd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 1 / 𝐴 ) < 1 ) |
3 |
1
|
simpld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) |
4 |
|
zgt0ge1 |
⊢ ( ( 1 / 𝐴 ) ∈ ℤ → ( 0 < ( 1 / 𝐴 ) ↔ 1 ≤ ( 1 / 𝐴 ) ) ) |
5 |
3 4
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( ( 1 / 𝐴 ) ∈ ℤ → 1 ≤ ( 1 / 𝐴 ) ) ) |
6 |
|
1re |
⊢ 1 ∈ ℝ |
7 |
|
0lt1 |
⊢ 0 < 1 |
8 |
|
0re |
⊢ 0 ∈ ℝ |
9 |
|
lttr |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < 𝐴 ) → 0 < 𝐴 ) ) |
10 |
8 6 9
|
mp3an12 |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 1 ∧ 1 < 𝐴 ) → 0 < 𝐴 ) ) |
11 |
7 10
|
mpani |
⊢ ( 𝐴 ∈ ℝ → ( 1 < 𝐴 → 0 < 𝐴 ) ) |
12 |
11
|
imdistani |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
13 |
|
gt0ne0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 𝐴 ≠ 0 ) |
15 |
|
rereccl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
16 |
14 15
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
17 |
|
lenlt |
⊢ ( ( 1 ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( 1 ≤ ( 1 / 𝐴 ) ↔ ¬ ( 1 / 𝐴 ) < 1 ) ) |
18 |
6 16 17
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 1 ≤ ( 1 / 𝐴 ) ↔ ¬ ( 1 / 𝐴 ) < 1 ) ) |
19 |
5 18
|
sylibd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( ( 1 / 𝐴 ) ∈ ℤ → ¬ ( 1 / 𝐴 ) < 1 ) ) |
20 |
2 19
|
mt2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ¬ ( 1 / 𝐴 ) ∈ ℤ ) |