| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reconnlem1 | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  ( ( topGen ‘ ran  (,) )  ↾t  𝐴 )  ∈  Conn )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝑥 [,] 𝑦 )  ⊆  𝐴 ) | 
						
							| 2 | 1 | ralrimivva | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  ( ( topGen ‘ ran  (,) )  ↾t  𝐴 )  ∈  Conn )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 ) | 
						
							| 3 | 2 | ex | ⊢ ( 𝐴  ⊆  ℝ  →  ( ( ( topGen ‘ ran  (,) )  ↾t  𝐴 )  ∈  Conn  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 ) ) | 
						
							| 4 |  | n0 | ⊢ ( ( 𝑢  ∩  𝐴 )  ≠  ∅  ↔  ∃ 𝑏 𝑏  ∈  ( 𝑢  ∩  𝐴 ) ) | 
						
							| 5 |  | n0 | ⊢ ( ( 𝑣  ∩  𝐴 )  ≠  ∅  ↔  ∃ 𝑐 𝑐  ∈  ( 𝑣  ∩  𝐴 ) ) | 
						
							| 6 | 4 5 | anbi12i | ⊢ ( ( ( 𝑢  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑣  ∩  𝐴 )  ≠  ∅ )  ↔  ( ∃ 𝑏 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  ∃ 𝑐 𝑐  ∈  ( 𝑣  ∩  𝐴 ) ) ) | 
						
							| 7 |  | exdistrv | ⊢ ( ∃ 𝑏 ∃ 𝑐 ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ↔  ( ∃ 𝑏 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  ∃ 𝑐 𝑐  ∈  ( 𝑣  ∩  𝐴 ) ) ) | 
						
							| 8 |  | simplll | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  →  𝐴  ⊆  ℝ ) | 
						
							| 9 |  | simprll | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  →  𝑏  ∈  ( 𝑢  ∩  𝐴 ) ) | 
						
							| 10 | 9 | elin2d | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  →  𝑏  ∈  𝐴 ) | 
						
							| 11 | 8 10 | sseldd | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  →  𝑏  ∈  ℝ ) | 
						
							| 12 |  | simprlr | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  →  𝑐  ∈  ( 𝑣  ∩  𝐴 ) ) | 
						
							| 13 | 12 | elin2d | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  →  𝑐  ∈  𝐴 ) | 
						
							| 14 | 8 13 | sseldd | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  →  𝑐  ∈  ℝ ) | 
						
							| 15 | 8 | adantr | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑏  ≤  𝑐 )  →  𝐴  ⊆  ℝ ) | 
						
							| 16 |  | simplrl | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  →  𝑢  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 17 | 16 | ad2antrr | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑏  ≤  𝑐 )  →  𝑢  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 18 |  | simplrr | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  →  𝑣  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑏  ≤  𝑐 )  →  𝑣  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 20 |  | simpllr | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑏  ≤  𝑐 )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 ) | 
						
							| 21 | 9 | adantr | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑏  ≤  𝑐 )  →  𝑏  ∈  ( 𝑢  ∩  𝐴 ) ) | 
						
							| 22 | 12 | adantr | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑏  ≤  𝑐 )  →  𝑐  ∈  ( 𝑣  ∩  𝐴 ) ) | 
						
							| 23 |  | simplrr | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑏  ≤  𝑐 )  →  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑏  ≤  𝑐 )  →  𝑏  ≤  𝑐 ) | 
						
							| 25 |  | eqid | ⊢ sup ( ( 𝑢  ∩  ( 𝑏 [,] 𝑐 ) ) ,  ℝ ,   <  )  =  sup ( ( 𝑢  ∩  ( 𝑏 [,] 𝑐 ) ) ,  ℝ ,   <  ) | 
						
							| 26 | 15 17 19 20 21 22 23 24 25 | reconnlem2 | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑏  ≤  𝑐 )  →  ¬  𝐴  ⊆  ( 𝑢  ∪  𝑣 ) ) | 
						
							| 27 | 8 | adantr | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑐  ≤  𝑏 )  →  𝐴  ⊆  ℝ ) | 
						
							| 28 | 18 | ad2antrr | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑐  ≤  𝑏 )  →  𝑣  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 29 | 16 | ad2antrr | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑐  ≤  𝑏 )  →  𝑢  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 30 |  | simpllr | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑐  ≤  𝑏 )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 ) | 
						
							| 31 | 12 | adantr | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑐  ≤  𝑏 )  →  𝑐  ∈  ( 𝑣  ∩  𝐴 ) ) | 
						
							| 32 | 9 | adantr | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑐  ≤  𝑏 )  →  𝑏  ∈  ( 𝑢  ∩  𝐴 ) ) | 
						
							| 33 |  | incom | ⊢ ( 𝑣  ∩  𝑢 )  =  ( 𝑢  ∩  𝑣 ) | 
						
							| 34 |  | simplrr | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑐  ≤  𝑏 )  →  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) | 
						
							| 35 | 33 34 | eqsstrid | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑐  ≤  𝑏 )  →  ( 𝑣  ∩  𝑢 )  ⊆  ( ℝ  ∖  𝐴 ) ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑐  ≤  𝑏 )  →  𝑐  ≤  𝑏 ) | 
						
							| 37 |  | eqid | ⊢ sup ( ( 𝑣  ∩  ( 𝑐 [,] 𝑏 ) ) ,  ℝ ,   <  )  =  sup ( ( 𝑣  ∩  ( 𝑐 [,] 𝑏 ) ) ,  ℝ ,   <  ) | 
						
							| 38 | 27 28 29 30 31 32 35 36 37 | reconnlem2 | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑐  ≤  𝑏 )  →  ¬  𝐴  ⊆  ( 𝑣  ∪  𝑢 ) ) | 
						
							| 39 |  | uncom | ⊢ ( 𝑣  ∪  𝑢 )  =  ( 𝑢  ∪  𝑣 ) | 
						
							| 40 | 39 | sseq2i | ⊢ ( 𝐴  ⊆  ( 𝑣  ∪  𝑢 )  ↔  𝐴  ⊆  ( 𝑢  ∪  𝑣 ) ) | 
						
							| 41 | 38 40 | sylnib | ⊢ ( ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  ∧  𝑐  ≤  𝑏 )  →  ¬  𝐴  ⊆  ( 𝑢  ∪  𝑣 ) ) | 
						
							| 42 | 11 14 26 41 | lecasei | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  ∧  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) ) )  →  ¬  𝐴  ⊆  ( 𝑢  ∪  𝑣 ) ) | 
						
							| 43 | 42 | exp32 | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  →  ( ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  →  ( ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 )  →  ¬  𝐴  ⊆  ( 𝑢  ∪  𝑣 ) ) ) ) | 
						
							| 44 | 43 | exlimdvv | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  →  ( ∃ 𝑏 ∃ 𝑐 ( 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  →  ( ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 )  →  ¬  𝐴  ⊆  ( 𝑢  ∪  𝑣 ) ) ) ) | 
						
							| 45 | 7 44 | biimtrrid | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  →  ( ( ∃ 𝑏 𝑏  ∈  ( 𝑢  ∩  𝐴 )  ∧  ∃ 𝑐 𝑐  ∈  ( 𝑣  ∩  𝐴 ) )  →  ( ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 )  →  ¬  𝐴  ⊆  ( 𝑢  ∪  𝑣 ) ) ) ) | 
						
							| 46 | 6 45 | biimtrid | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  →  ( ( ( 𝑢  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑣  ∩  𝐴 )  ≠  ∅ )  →  ( ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 )  →  ¬  𝐴  ⊆  ( 𝑢  ∪  𝑣 ) ) ) ) | 
						
							| 47 | 46 | expd | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  →  ( ( 𝑢  ∩  𝐴 )  ≠  ∅  →  ( ( 𝑣  ∩  𝐴 )  ≠  ∅  →  ( ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 )  →  ¬  𝐴  ⊆  ( 𝑢  ∪  𝑣 ) ) ) ) ) | 
						
							| 48 | 47 | 3impd | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 )  →  ( ( ( 𝑢  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑣  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) )  →  ¬  𝐴  ⊆  ( 𝑢  ∪  𝑣 ) ) ) | 
						
							| 49 | 48 | ex | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑢  ∈  ( topGen ‘ ran  (,) )  ∧  𝑣  ∈  ( topGen ‘ ran  (,) ) ) )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴  →  ( ( ( 𝑢  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑣  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) )  →  ¬  𝐴  ⊆  ( 𝑢  ∪  𝑣 ) ) ) ) | 
						
							| 50 | 49 | ralrimdvva | ⊢ ( 𝐴  ⊆  ℝ  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴  →  ∀ 𝑢  ∈  ( topGen ‘ ran  (,) ) ∀ 𝑣  ∈  ( topGen ‘ ran  (,) ) ( ( ( 𝑢  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑣  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) )  →  ¬  𝐴  ⊆  ( 𝑢  ∪  𝑣 ) ) ) ) | 
						
							| 51 |  | retopon | ⊢ ( topGen ‘ ran  (,) )  ∈  ( TopOn ‘ ℝ ) | 
						
							| 52 |  | connsub | ⊢ ( ( ( topGen ‘ ran  (,) )  ∈  ( TopOn ‘ ℝ )  ∧  𝐴  ⊆  ℝ )  →  ( ( ( topGen ‘ ran  (,) )  ↾t  𝐴 )  ∈  Conn  ↔  ∀ 𝑢  ∈  ( topGen ‘ ran  (,) ) ∀ 𝑣  ∈  ( topGen ‘ ran  (,) ) ( ( ( 𝑢  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑣  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) )  →  ¬  𝐴  ⊆  ( 𝑢  ∪  𝑣 ) ) ) ) | 
						
							| 53 | 51 52 | mpan | ⊢ ( 𝐴  ⊆  ℝ  →  ( ( ( topGen ‘ ran  (,) )  ↾t  𝐴 )  ∈  Conn  ↔  ∀ 𝑢  ∈  ( topGen ‘ ran  (,) ) ∀ 𝑣  ∈  ( topGen ‘ ran  (,) ) ( ( ( 𝑢  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑣  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑢  ∩  𝑣 )  ⊆  ( ℝ  ∖  𝐴 ) )  →  ¬  𝐴  ⊆  ( 𝑢  ∪  𝑣 ) ) ) ) | 
						
							| 54 | 50 53 | sylibrd | ⊢ ( 𝐴  ⊆  ℝ  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴  →  ( ( topGen ‘ ran  (,) )  ↾t  𝐴 )  ∈  Conn ) ) | 
						
							| 55 | 3 54 | impbid | ⊢ ( 𝐴  ⊆  ℝ  →  ( ( ( topGen ‘ ran  (,) )  ↾t  𝐴 )  ∈  Conn  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 [,] 𝑦 )  ⊆  𝐴 ) ) |