| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) |
| 2 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
| 3 |
2
|
a1i |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ) |
| 4 |
|
simplll |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝐴 ⊆ ℝ ) |
| 5 |
|
iooretop |
⊢ ( -∞ (,) 𝑧 ) ∈ ( topGen ‘ ran (,) ) |
| 6 |
5
|
a1i |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( -∞ (,) 𝑧 ) ∈ ( topGen ‘ ran (,) ) ) |
| 7 |
|
iooretop |
⊢ ( 𝑧 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) |
| 8 |
7
|
a1i |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑧 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) |
| 9 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑋 ∈ 𝐴 ) |
| 10 |
4 9
|
sseldd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑋 ∈ ℝ ) |
| 11 |
10
|
mnfltd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → -∞ < 𝑋 ) |
| 12 |
|
eldifn |
⊢ ( 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) → ¬ 𝑧 ∈ 𝐴 ) |
| 13 |
12
|
adantl |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ¬ 𝑧 ∈ 𝐴 ) |
| 14 |
|
eleq1 |
⊢ ( 𝑋 = 𝑧 → ( 𝑋 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
| 15 |
9 14
|
syl5ibcom |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑋 = 𝑧 → 𝑧 ∈ 𝐴 ) ) |
| 16 |
13 15
|
mtod |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ¬ 𝑋 = 𝑧 ) |
| 17 |
|
eldifi |
⊢ ( 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) → 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 19 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑌 ∈ 𝐴 ) |
| 20 |
4 19
|
sseldd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑌 ∈ ℝ ) |
| 21 |
|
elicc2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝑧 ∈ ℝ ∧ 𝑋 ≤ 𝑧 ∧ 𝑧 ≤ 𝑌 ) ) ) |
| 22 |
10 20 21
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝑧 ∈ ℝ ∧ 𝑋 ≤ 𝑧 ∧ 𝑧 ≤ 𝑌 ) ) ) |
| 23 |
18 22
|
mpbid |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑧 ∈ ℝ ∧ 𝑋 ≤ 𝑧 ∧ 𝑧 ≤ 𝑌 ) ) |
| 24 |
23
|
simp2d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑋 ≤ 𝑧 ) |
| 25 |
23
|
simp1d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑧 ∈ ℝ ) |
| 26 |
10 25
|
leloed |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑋 ≤ 𝑧 ↔ ( 𝑋 < 𝑧 ∨ 𝑋 = 𝑧 ) ) ) |
| 27 |
24 26
|
mpbid |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑋 < 𝑧 ∨ 𝑋 = 𝑧 ) ) |
| 28 |
27
|
ord |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( ¬ 𝑋 < 𝑧 → 𝑋 = 𝑧 ) ) |
| 29 |
16 28
|
mt3d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑋 < 𝑧 ) |
| 30 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 31 |
25
|
rexrd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑧 ∈ ℝ* ) |
| 32 |
|
elioo2 |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( 𝑋 ∈ ( -∞ (,) 𝑧 ) ↔ ( 𝑋 ∈ ℝ ∧ -∞ < 𝑋 ∧ 𝑋 < 𝑧 ) ) ) |
| 33 |
30 31 32
|
sylancr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑋 ∈ ( -∞ (,) 𝑧 ) ↔ ( 𝑋 ∈ ℝ ∧ -∞ < 𝑋 ∧ 𝑋 < 𝑧 ) ) ) |
| 34 |
10 11 29 33
|
mpbir3and |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑋 ∈ ( -∞ (,) 𝑧 ) ) |
| 35 |
|
inelcm |
⊢ ( ( 𝑋 ∈ ( -∞ (,) 𝑧 ) ∧ 𝑋 ∈ 𝐴 ) → ( ( -∞ (,) 𝑧 ) ∩ 𝐴 ) ≠ ∅ ) |
| 36 |
34 9 35
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( ( -∞ (,) 𝑧 ) ∩ 𝐴 ) ≠ ∅ ) |
| 37 |
|
eleq1 |
⊢ ( 𝑧 = 𝑌 → ( 𝑧 ∈ 𝐴 ↔ 𝑌 ∈ 𝐴 ) ) |
| 38 |
19 37
|
syl5ibrcom |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑧 = 𝑌 → 𝑧 ∈ 𝐴 ) ) |
| 39 |
13 38
|
mtod |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ¬ 𝑧 = 𝑌 ) |
| 40 |
23
|
simp3d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑧 ≤ 𝑌 ) |
| 41 |
25 20
|
leloed |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑧 ≤ 𝑌 ↔ ( 𝑧 < 𝑌 ∨ 𝑧 = 𝑌 ) ) ) |
| 42 |
40 41
|
mpbid |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑧 < 𝑌 ∨ 𝑧 = 𝑌 ) ) |
| 43 |
42
|
ord |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( ¬ 𝑧 < 𝑌 → 𝑧 = 𝑌 ) ) |
| 44 |
39 43
|
mt3d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑧 < 𝑌 ) |
| 45 |
20
|
ltpnfd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑌 < +∞ ) |
| 46 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 47 |
|
elioo2 |
⊢ ( ( 𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑌 ∈ ( 𝑧 (,) +∞ ) ↔ ( 𝑌 ∈ ℝ ∧ 𝑧 < 𝑌 ∧ 𝑌 < +∞ ) ) ) |
| 48 |
31 46 47
|
sylancl |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑌 ∈ ( 𝑧 (,) +∞ ) ↔ ( 𝑌 ∈ ℝ ∧ 𝑧 < 𝑌 ∧ 𝑌 < +∞ ) ) ) |
| 49 |
20 44 45 48
|
mpbir3and |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑌 ∈ ( 𝑧 (,) +∞ ) ) |
| 50 |
|
inelcm |
⊢ ( ( 𝑌 ∈ ( 𝑧 (,) +∞ ) ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝑧 (,) +∞ ) ∩ 𝐴 ) ≠ ∅ ) |
| 51 |
49 19 50
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( ( 𝑧 (,) +∞ ) ∩ 𝐴 ) ≠ ∅ ) |
| 52 |
|
inss1 |
⊢ ( ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) ∩ 𝐴 ) ⊆ ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) |
| 53 |
31 30
|
jctil |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( -∞ ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) |
| 54 |
31 46
|
jctir |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ) |
| 55 |
25
|
leidd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑧 ≤ 𝑧 ) |
| 56 |
|
ioodisj |
⊢ ( ( ( ( -∞ ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ∧ ( 𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ) ∧ 𝑧 ≤ 𝑧 ) → ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) = ∅ ) |
| 57 |
53 54 55 56
|
syl21anc |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) = ∅ ) |
| 58 |
|
sseq0 |
⊢ ( ( ( ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) ∩ 𝐴 ) ⊆ ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) ∧ ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) = ∅ ) → ( ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) ∩ 𝐴 ) = ∅ ) |
| 59 |
52 57 58
|
sylancr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) ∩ 𝐴 ) = ∅ ) |
| 60 |
30
|
a1i |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → -∞ ∈ ℝ* ) |
| 61 |
46
|
a1i |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → +∞ ∈ ℝ* ) |
| 62 |
25
|
mnfltd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → -∞ < 𝑧 ) |
| 63 |
25
|
ltpnfd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑧 < +∞ ) |
| 64 |
|
ioojoin |
⊢ ( ( ( -∞ ∈ ℝ* ∧ 𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ < 𝑧 ∧ 𝑧 < +∞ ) ) → ( ( ( -∞ (,) 𝑧 ) ∪ { 𝑧 } ) ∪ ( 𝑧 (,) +∞ ) ) = ( -∞ (,) +∞ ) ) |
| 65 |
60 31 61 62 63 64
|
syl32anc |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( ( ( -∞ (,) 𝑧 ) ∪ { 𝑧 } ) ∪ ( 𝑧 (,) +∞ ) ) = ( -∞ (,) +∞ ) ) |
| 66 |
|
unass |
⊢ ( ( ( -∞ (,) 𝑧 ) ∪ { 𝑧 } ) ∪ ( 𝑧 (,) +∞ ) ) = ( ( -∞ (,) 𝑧 ) ∪ ( { 𝑧 } ∪ ( 𝑧 (,) +∞ ) ) ) |
| 67 |
|
un12 |
⊢ ( ( -∞ (,) 𝑧 ) ∪ ( { 𝑧 } ∪ ( 𝑧 (,) +∞ ) ) ) = ( { 𝑧 } ∪ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) |
| 68 |
66 67
|
eqtri |
⊢ ( ( ( -∞ (,) 𝑧 ) ∪ { 𝑧 } ) ∪ ( 𝑧 (,) +∞ ) ) = ( { 𝑧 } ∪ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) |
| 69 |
|
ioomax |
⊢ ( -∞ (,) +∞ ) = ℝ |
| 70 |
65 68 69
|
3eqtr3g |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( { 𝑧 } ∪ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) = ℝ ) |
| 71 |
4 70
|
sseqtrrd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝐴 ⊆ ( { 𝑧 } ∪ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) ) |
| 72 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝐴 ) |
| 73 |
13 72
|
sylibr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝐴 ∩ { 𝑧 } ) = ∅ ) |
| 74 |
|
disjssun |
⊢ ( ( 𝐴 ∩ { 𝑧 } ) = ∅ → ( 𝐴 ⊆ ( { 𝑧 } ∪ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) ↔ 𝐴 ⊆ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) ) |
| 75 |
73 74
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝐴 ⊆ ( { 𝑧 } ∪ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) ↔ 𝐴 ⊆ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) ) |
| 76 |
71 75
|
mpbid |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝐴 ⊆ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) |
| 77 |
3 4 6 8 36 51 59 76
|
nconnsubb |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ¬ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) |
| 78 |
77
|
ex |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) → ¬ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ) |
| 79 |
1 78
|
mt2d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ¬ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) |
| 80 |
79
|
eq0rdv |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) = ∅ ) |
| 81 |
|
ssdif0 |
⊢ ( ( 𝑋 [,] 𝑌 ) ⊆ 𝐴 ↔ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) = ∅ ) |
| 82 |
80 81
|
sylibr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( 𝑋 [,] 𝑌 ) ⊆ 𝐴 ) |