Metamath Proof Explorer


Theorem recoscl

Description: The cosine of a real number is real. (Contributed by NM, 30-Apr-2005)

Ref Expression
Assertion recoscl ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 recosval ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) = ( ℜ ‘ ( exp ‘ ( i · 𝐴 ) ) ) )
2 ax-icn i ∈ ℂ
3 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
4 mulcl ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ )
5 2 3 4 sylancr ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∈ ℂ )
6 efcl ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ )
7 5 6 syl ( 𝐴 ∈ ℝ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ )
8 7 recld ( 𝐴 ∈ ℝ → ( ℜ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ∈ ℝ )
9 1 8 eqeltrd ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ )