Step |
Hyp |
Ref |
Expression |
1 |
|
cosf |
⊢ cos : ℂ ⟶ ℂ |
2 |
|
ffn |
⊢ ( cos : ℂ ⟶ ℂ → cos Fn ℂ ) |
3 |
1 2
|
ax-mp |
⊢ cos Fn ℂ |
4 |
|
0re |
⊢ 0 ∈ ℝ |
5 |
|
pire |
⊢ π ∈ ℝ |
6 |
|
iccssre |
⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ) → ( 0 [,] π ) ⊆ ℝ ) |
7 |
4 5 6
|
mp2an |
⊢ ( 0 [,] π ) ⊆ ℝ |
8 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
9 |
7 8
|
sstri |
⊢ ( 0 [,] π ) ⊆ ℂ |
10 |
|
fnssres |
⊢ ( ( cos Fn ℂ ∧ ( 0 [,] π ) ⊆ ℂ ) → ( cos ↾ ( 0 [,] π ) ) Fn ( 0 [,] π ) ) |
11 |
3 9 10
|
mp2an |
⊢ ( cos ↾ ( 0 [,] π ) ) Fn ( 0 [,] π ) |
12 |
|
fvres |
⊢ ( 𝑥 ∈ ( 0 [,] π ) → ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑥 ) = ( cos ‘ 𝑥 ) ) |
13 |
7
|
sseli |
⊢ ( 𝑥 ∈ ( 0 [,] π ) → 𝑥 ∈ ℝ ) |
14 |
|
cosbnd2 |
⊢ ( 𝑥 ∈ ℝ → ( cos ‘ 𝑥 ) ∈ ( - 1 [,] 1 ) ) |
15 |
13 14
|
syl |
⊢ ( 𝑥 ∈ ( 0 [,] π ) → ( cos ‘ 𝑥 ) ∈ ( - 1 [,] 1 ) ) |
16 |
12 15
|
eqeltrd |
⊢ ( 𝑥 ∈ ( 0 [,] π ) → ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑥 ) ∈ ( - 1 [,] 1 ) ) |
17 |
16
|
rgen |
⊢ ∀ 𝑥 ∈ ( 0 [,] π ) ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑥 ) ∈ ( - 1 [,] 1 ) |
18 |
|
ffnfv |
⊢ ( ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) ⟶ ( - 1 [,] 1 ) ↔ ( ( cos ↾ ( 0 [,] π ) ) Fn ( 0 [,] π ) ∧ ∀ 𝑥 ∈ ( 0 [,] π ) ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑥 ) ∈ ( - 1 [,] 1 ) ) ) |
19 |
11 17 18
|
mpbir2an |
⊢ ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) ⟶ ( - 1 [,] 1 ) |
20 |
|
fvres |
⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) = ( cos ‘ 𝑦 ) ) |
21 |
12 20
|
eqeqan12d |
⊢ ( ( 𝑥 ∈ ( 0 [,] π ) ∧ 𝑦 ∈ ( 0 [,] π ) ) → ( ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑥 ) = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) ↔ ( cos ‘ 𝑥 ) = ( cos ‘ 𝑦 ) ) ) |
22 |
|
cos11 |
⊢ ( ( 𝑥 ∈ ( 0 [,] π ) ∧ 𝑦 ∈ ( 0 [,] π ) ) → ( 𝑥 = 𝑦 ↔ ( cos ‘ 𝑥 ) = ( cos ‘ 𝑦 ) ) ) |
23 |
22
|
biimprd |
⊢ ( ( 𝑥 ∈ ( 0 [,] π ) ∧ 𝑦 ∈ ( 0 [,] π ) ) → ( ( cos ‘ 𝑥 ) = ( cos ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
24 |
21 23
|
sylbid |
⊢ ( ( 𝑥 ∈ ( 0 [,] π ) ∧ 𝑦 ∈ ( 0 [,] π ) ) → ( ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑥 ) = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
25 |
24
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( 0 [,] π ) ∀ 𝑦 ∈ ( 0 [,] π ) ( ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑥 ) = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
26 |
|
dff13 |
⊢ ( ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –1-1→ ( - 1 [,] 1 ) ↔ ( ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) ⟶ ( - 1 [,] 1 ) ∧ ∀ 𝑥 ∈ ( 0 [,] π ) ∀ 𝑦 ∈ ( 0 [,] π ) ( ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑥 ) = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
27 |
19 25 26
|
mpbir2an |
⊢ ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –1-1→ ( - 1 [,] 1 ) |
28 |
4
|
a1i |
⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → 0 ∈ ℝ ) |
29 |
5
|
a1i |
⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → π ∈ ℝ ) |
30 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
31 |
|
1re |
⊢ 1 ∈ ℝ |
32 |
30 31
|
elicc2i |
⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) ↔ ( 𝑥 ∈ ℝ ∧ - 1 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) |
33 |
32
|
simp1bi |
⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → 𝑥 ∈ ℝ ) |
34 |
|
pipos |
⊢ 0 < π |
35 |
34
|
a1i |
⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → 0 < π ) |
36 |
9
|
a1i |
⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → ( 0 [,] π ) ⊆ ℂ ) |
37 |
|
coscn |
⊢ cos ∈ ( ℂ –cn→ ℂ ) |
38 |
37
|
a1i |
⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → cos ∈ ( ℂ –cn→ ℂ ) ) |
39 |
7
|
sseli |
⊢ ( 𝑧 ∈ ( 0 [,] π ) → 𝑧 ∈ ℝ ) |
40 |
39
|
recoscld |
⊢ ( 𝑧 ∈ ( 0 [,] π ) → ( cos ‘ 𝑧 ) ∈ ℝ ) |
41 |
40
|
adantl |
⊢ ( ( 𝑥 ∈ ( - 1 [,] 1 ) ∧ 𝑧 ∈ ( 0 [,] π ) ) → ( cos ‘ 𝑧 ) ∈ ℝ ) |
42 |
|
cospi |
⊢ ( cos ‘ π ) = - 1 |
43 |
32
|
simp2bi |
⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → - 1 ≤ 𝑥 ) |
44 |
42 43
|
eqbrtrid |
⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → ( cos ‘ π ) ≤ 𝑥 ) |
45 |
32
|
simp3bi |
⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → 𝑥 ≤ 1 ) |
46 |
|
cos0 |
⊢ ( cos ‘ 0 ) = 1 |
47 |
45 46
|
breqtrrdi |
⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → 𝑥 ≤ ( cos ‘ 0 ) ) |
48 |
44 47
|
jca |
⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → ( ( cos ‘ π ) ≤ 𝑥 ∧ 𝑥 ≤ ( cos ‘ 0 ) ) ) |
49 |
28 29 33 35 36 38 41 48
|
ivthle2 |
⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → ∃ 𝑦 ∈ ( 0 [,] π ) ( cos ‘ 𝑦 ) = 𝑥 ) |
50 |
|
eqcom |
⊢ ( 𝑥 = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) ↔ ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) = 𝑥 ) |
51 |
20
|
eqeq1d |
⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) = 𝑥 ↔ ( cos ‘ 𝑦 ) = 𝑥 ) ) |
52 |
50 51
|
syl5bb |
⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( 𝑥 = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) ↔ ( cos ‘ 𝑦 ) = 𝑥 ) ) |
53 |
52
|
rexbiia |
⊢ ( ∃ 𝑦 ∈ ( 0 [,] π ) 𝑥 = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ ( 0 [,] π ) ( cos ‘ 𝑦 ) = 𝑥 ) |
54 |
49 53
|
sylibr |
⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → ∃ 𝑦 ∈ ( 0 [,] π ) 𝑥 = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) ) |
55 |
54
|
rgen |
⊢ ∀ 𝑥 ∈ ( - 1 [,] 1 ) ∃ 𝑦 ∈ ( 0 [,] π ) 𝑥 = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) |
56 |
|
dffo3 |
⊢ ( ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –onto→ ( - 1 [,] 1 ) ↔ ( ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) ⟶ ( - 1 [,] 1 ) ∧ ∀ 𝑥 ∈ ( - 1 [,] 1 ) ∃ 𝑦 ∈ ( 0 [,] π ) 𝑥 = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) ) ) |
57 |
19 55 56
|
mpbir2an |
⊢ ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –onto→ ( - 1 [,] 1 ) |
58 |
|
df-f1o |
⊢ ( ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –1-1-onto→ ( - 1 [,] 1 ) ↔ ( ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –1-1→ ( - 1 [,] 1 ) ∧ ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –onto→ ( - 1 [,] 1 ) ) ) |
59 |
27 57 58
|
mpbir2an |
⊢ ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –1-1-onto→ ( - 1 [,] 1 ) |