Metamath Proof Explorer


Theorem recoshcl

Description: The hyperbolic cosine of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion recoshcl ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 rpcoshcl ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ+ )
2 1 rpred ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ )