Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
⊢ i ∈ ℂ |
2 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
3 |
|
cjmul |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ∗ ‘ ( i · 𝐴 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) ) |
4 |
1 2 3
|
sylancr |
⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ ( i · 𝐴 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) ) |
5 |
|
cji |
⊢ ( ∗ ‘ i ) = - i |
6 |
5
|
oveq1i |
⊢ ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) = ( - i · ( ∗ ‘ 𝐴 ) ) |
7 |
|
cjre |
⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 ) |
8 |
7
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ → ( - i · ( ∗ ‘ 𝐴 ) ) = ( - i · 𝐴 ) ) |
9 |
6 8
|
eqtrid |
⊢ ( 𝐴 ∈ ℝ → ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) = ( - i · 𝐴 ) ) |
10 |
4 9
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ ( i · 𝐴 ) ) = ( - i · 𝐴 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( ∗ ‘ ( i · 𝐴 ) ) ) = ( exp ‘ ( - i · 𝐴 ) ) ) |
12 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
13 |
1 2 12
|
sylancr |
⊢ ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∈ ℂ ) |
14 |
|
efcj |
⊢ ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( ∗ ‘ ( i · 𝐴 ) ) ) = ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) |
15 |
13 14
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( ∗ ‘ ( i · 𝐴 ) ) ) = ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) |
16 |
11 15
|
eqtr3d |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( - i · 𝐴 ) ) = ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) + ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) ) |
18 |
17
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ → ( ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) / 2 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) / 2 ) ) |
19 |
|
cosval |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) / 2 ) ) |
20 |
2 19
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) / 2 ) ) |
21 |
|
efcl |
⊢ ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
22 |
|
reval |
⊢ ( ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ → ( ℜ ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) / 2 ) ) |
23 |
13 21 22
|
3syl |
⊢ ( 𝐴 ∈ ℝ → ( ℜ ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) / 2 ) ) |
24 |
18 20 23
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) = ( ℜ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) |