| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltp1 | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  <  ( 𝐴  +  1 ) ) | 
						
							| 2 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 3 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 4 |  | addcom | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝐴  +  1 )  =  ( 1  +  𝐴 ) ) | 
						
							| 5 | 2 3 4 | sylancl | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  +  1 )  =  ( 1  +  𝐴 ) ) | 
						
							| 6 | 1 5 | breqtrd | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  <  ( 1  +  𝐴 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  𝐴  <  ( 1  +  𝐴 ) ) | 
						
							| 8 | 2 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  𝐴  ∈  ℂ ) | 
						
							| 9 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 10 |  | readdcl | ⊢ ( ( 1  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 1  +  𝐴 )  ∈  ℝ ) | 
						
							| 11 | 9 10 | mpan | ⊢ ( 𝐴  ∈  ℝ  →  ( 1  +  𝐴 )  ∈  ℝ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( 1  +  𝐴 )  ∈  ℝ ) | 
						
							| 13 | 12 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( 1  +  𝐴 )  ∈  ℂ ) | 
						
							| 14 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 15 |  | addgtge0 | ⊢ ( ( ( 1  ∈  ℝ  ∧  𝐴  ∈  ℝ )  ∧  ( 0  <  1  ∧  0  ≤  𝐴 ) )  →  0  <  ( 1  +  𝐴 ) ) | 
						
							| 16 | 14 15 | mpanr1 | ⊢ ( ( ( 1  ∈  ℝ  ∧  𝐴  ∈  ℝ )  ∧  0  ≤  𝐴 )  →  0  <  ( 1  +  𝐴 ) ) | 
						
							| 17 | 9 16 | mpanl1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  0  <  ( 1  +  𝐴 ) ) | 
						
							| 18 | 17 | gt0ne0d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( 1  +  𝐴 )  ≠  0 ) | 
						
							| 19 | 8 13 18 | divcan1d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( ( 𝐴  /  ( 1  +  𝐴 ) )  ·  ( 1  +  𝐴 ) )  =  𝐴 ) | 
						
							| 20 | 11 | recnd | ⊢ ( 𝐴  ∈  ℝ  →  ( 1  +  𝐴 )  ∈  ℂ ) | 
						
							| 21 | 20 | mullidd | ⊢ ( 𝐴  ∈  ℝ  →  ( 1  ·  ( 1  +  𝐴 ) )  =  ( 1  +  𝐴 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( 1  ·  ( 1  +  𝐴 ) )  =  ( 1  +  𝐴 ) ) | 
						
							| 23 | 7 19 22 | 3brtr4d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( ( 𝐴  /  ( 1  +  𝐴 ) )  ·  ( 1  +  𝐴 ) )  <  ( 1  ·  ( 1  +  𝐴 ) ) ) | 
						
							| 24 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 25 | 24 12 18 | redivcld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( 𝐴  /  ( 1  +  𝐴 ) )  ∈  ℝ ) | 
						
							| 26 |  | ltmul1 | ⊢ ( ( ( 𝐴  /  ( 1  +  𝐴 ) )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( ( 1  +  𝐴 )  ∈  ℝ  ∧  0  <  ( 1  +  𝐴 ) ) )  →  ( ( 𝐴  /  ( 1  +  𝐴 ) )  <  1  ↔  ( ( 𝐴  /  ( 1  +  𝐴 ) )  ·  ( 1  +  𝐴 ) )  <  ( 1  ·  ( 1  +  𝐴 ) ) ) ) | 
						
							| 27 | 9 26 | mp3an2 | ⊢ ( ( ( 𝐴  /  ( 1  +  𝐴 ) )  ∈  ℝ  ∧  ( ( 1  +  𝐴 )  ∈  ℝ  ∧  0  <  ( 1  +  𝐴 ) ) )  →  ( ( 𝐴  /  ( 1  +  𝐴 ) )  <  1  ↔  ( ( 𝐴  /  ( 1  +  𝐴 ) )  ·  ( 1  +  𝐴 ) )  <  ( 1  ·  ( 1  +  𝐴 ) ) ) ) | 
						
							| 28 | 25 12 17 27 | syl12anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( ( 𝐴  /  ( 1  +  𝐴 ) )  <  1  ↔  ( ( 𝐴  /  ( 1  +  𝐴 ) )  ·  ( 1  +  𝐴 ) )  <  ( 1  ·  ( 1  +  𝐴 ) ) ) ) | 
						
							| 29 | 23 28 | mpbird | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( 𝐴  /  ( 1  +  𝐴 ) )  <  1 ) |