Step |
Hyp |
Ref |
Expression |
1 |
|
ltp1 |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( 𝐴 + 1 ) ) |
2 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
3 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
4 |
|
addcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) ) |
5 |
2 3 4
|
sylancl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) ) |
6 |
1 5
|
breqtrd |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( 1 + 𝐴 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 < ( 1 + 𝐴 ) ) |
8 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℂ ) |
9 |
|
1re |
⊢ 1 ∈ ℝ |
10 |
|
readdcl |
⊢ ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 1 + 𝐴 ) ∈ ℝ ) |
11 |
9 10
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 1 + 𝐴 ) ∈ ℝ ) |
12 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 1 + 𝐴 ) ∈ ℝ ) |
13 |
12
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 1 + 𝐴 ) ∈ ℂ ) |
14 |
|
0lt1 |
⊢ 0 < 1 |
15 |
|
addgtge0 |
⊢ ( ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 0 < 1 ∧ 0 ≤ 𝐴 ) ) → 0 < ( 1 + 𝐴 ) ) |
16 |
14 15
|
mpanr1 |
⊢ ( ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ 0 ≤ 𝐴 ) → 0 < ( 1 + 𝐴 ) ) |
17 |
9 16
|
mpanl1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 < ( 1 + 𝐴 ) ) |
18 |
17
|
gt0ne0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 1 + 𝐴 ) ≠ 0 ) |
19 |
8 13 18
|
divcan1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( 𝐴 / ( 1 + 𝐴 ) ) · ( 1 + 𝐴 ) ) = 𝐴 ) |
20 |
11
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( 1 + 𝐴 ) ∈ ℂ ) |
21 |
20
|
mulid2d |
⊢ ( 𝐴 ∈ ℝ → ( 1 · ( 1 + 𝐴 ) ) = ( 1 + 𝐴 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 1 · ( 1 + 𝐴 ) ) = ( 1 + 𝐴 ) ) |
23 |
7 19 22
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( 𝐴 / ( 1 + 𝐴 ) ) · ( 1 + 𝐴 ) ) < ( 1 · ( 1 + 𝐴 ) ) ) |
24 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
25 |
24 12 18
|
redivcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 / ( 1 + 𝐴 ) ) ∈ ℝ ) |
26 |
|
ltmul1 |
⊢ ( ( ( 𝐴 / ( 1 + 𝐴 ) ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 1 + 𝐴 ) ∈ ℝ ∧ 0 < ( 1 + 𝐴 ) ) ) → ( ( 𝐴 / ( 1 + 𝐴 ) ) < 1 ↔ ( ( 𝐴 / ( 1 + 𝐴 ) ) · ( 1 + 𝐴 ) ) < ( 1 · ( 1 + 𝐴 ) ) ) ) |
27 |
9 26
|
mp3an2 |
⊢ ( ( ( 𝐴 / ( 1 + 𝐴 ) ) ∈ ℝ ∧ ( ( 1 + 𝐴 ) ∈ ℝ ∧ 0 < ( 1 + 𝐴 ) ) ) → ( ( 𝐴 / ( 1 + 𝐴 ) ) < 1 ↔ ( ( 𝐴 / ( 1 + 𝐴 ) ) · ( 1 + 𝐴 ) ) < ( 1 · ( 1 + 𝐴 ) ) ) ) |
28 |
25 12 17 27
|
syl12anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( 𝐴 / ( 1 + 𝐴 ) ) < 1 ↔ ( ( 𝐴 / ( 1 + 𝐴 ) ) · ( 1 + 𝐴 ) ) < ( 1 · ( 1 + 𝐴 ) ) ) ) |
29 |
23 28
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 / ( 1 + 𝐴 ) ) < 1 ) |