Step |
Hyp |
Ref |
Expression |
1 |
|
recid2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) |
2 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 1 ∈ ℂ ) |
3 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
4 |
|
reccl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
5 |
|
recne0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ≠ 0 ) |
6 |
|
divmul |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( ( 1 / 𝐴 ) ∈ ℂ ∧ ( 1 / 𝐴 ) ≠ 0 ) ) → ( ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ↔ ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) ) |
7 |
2 3 4 5 6
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ↔ ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) ) |
8 |
1 7
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) |