| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recid2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) |
| 2 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 1 ∈ ℂ ) |
| 3 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 4 |
|
reccl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
| 5 |
|
recne0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ≠ 0 ) |
| 6 |
|
divmul |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( ( 1 / 𝐴 ) ∈ ℂ ∧ ( 1 / 𝐴 ) ≠ 0 ) ) → ( ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ↔ ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) ) |
| 7 |
2 3 4 5 6
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ↔ ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) ) |
| 8 |
1 7
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) |