Metamath Proof Explorer


Theorem recrec

Description: A number is equal to the reciprocal of its reciprocal. Theorem I.10 of Apostol p. 18. (Contributed by NM, 26-Sep-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion recrec ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 recid2 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 )
2 1cnd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 1 ∈ ℂ )
3 simpl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ )
4 reccl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ )
5 recne0 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ≠ 0 )
6 divmul ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( ( 1 / 𝐴 ) ∈ ℂ ∧ ( 1 / 𝐴 ) ≠ 0 ) ) → ( ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ↔ ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) )
7 2 3 4 5 6 syl112anc ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ↔ ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) )
8 1 7 mpbird ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 )